การศึกษาสมบัติของฝุ่นละอองในบรรยากาศที่กรุงเทพมหานครและปริมณฑล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร ปีการศึกษา 2548 ISBN 974-11-6219-7 ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

A STUDY OF AEROSOL PROPERTIES IN THE ATMOSPHERE AT BANGKOK AND ITS SUBURBS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

Department of Physics

Graduate School

SILPAKORN UNIVERSITY

2005

ISBN 974-11-6219-7

บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร อนุมัติให้วิทยานิพนธ์เรื่อง "การศึกษาสมบัติของ ฝุ่นละอองในบรรยากาศที่กรุงเทพมหานครและปริมณฑล"เสนอโคย นางสาวสุดารัตน์ สุนทโรภาส เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์

.....

(รองศาสตราจารย์ คร.วิสาข์ จัติวัตร์) รองอธิการบดี ฝ่ายวิชาการ รักษาราชการแทน คณบดีบัณฑิตวิทยาลัย วันที่.......เดือน....พ.ศ.

ปากผู้ควบคุมวิทยามิพนธ์ 1971 มาการ สถาบบสิบสิเทธิ์ 1. รองศาสตราจารย์ คร.เสริม จันทร์ลาย

คณะกรรมการตรวจสอบวิทยานิพนธ์

.....ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์จำนงก์ ฉายเชิด)

...../...../....../....../

.....กรรมการ (รองศาสตราจารย์ คร.เสริม จันทร์ฉาย)

...../...../...../...../

K 46306210 : สาขาวิชาฟิสิกส์

้ คำสำคัญ : ฝุ่นละออง / ความลึกเชิงแสง / สภาพความขุ่นมัว /รังสีควงอาทิตย์ / บรรยากาศ

สุดารัตน์ สุนทโรภาส : การศึกษาสมบัติของฝุ่นละอองในบรรยากาศที่กรุงเทพมหานคร และปริมณฑล (A STUDY OF AEROSOL PROPERTIES IN THE ATMOSPHERE AT BANGKOK AND ITS SUBURBS) อาจารย์ผู้ควบคุมวิทยานิพนธ์ : รศ. คร. เสริม จันทร์ฉาย. 180 หน้า. ISBN 974-11-6219-7.

ในงานวิจัยนี้ ผ้วิจัยได้ทำการศึกษาสมบัติของฝุ่นละอองที่กรงเทพมหานครและปริมณฑล โดยใช้ข้อมูลสเปกตรัมรังสีดวงอาทิตย์ ที่ทำการวัดที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร 13.73 °N, 100.57 °E สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี 14.08 °N, 100.62 °E และมหาวิทยาลัย ศิลปากร จังหวัดนครปฐม 13.82 °N, 100.04 °E สำหรับสถานีนครปฐม ผู้วิจัยได้ทำการวัดสเปกตรัม รังสีควงอาทิตย์ โดยใช้เครื่อง Multi-filter rotating shadowband radiometer (MFR-7) กรณีสถานี AIT การวัดคำเนินการโดย AIT โดยใช้เครื่อง sunphotometer ที่มีระบบติดตามดวงอาทิตย์อัตโนมัติ สำหรับสถานีกรุงเทพฯ การวัดคำเนินการโดยกรมอุตุนิยมวิทยา โดยใช้ sunphotometer แบบ . เคลื่อนย้ายได้ ผู้วิจัยได้นำข้อมูลสเปิกตรัมรังสีดวงอาทิตย์จำนวน 2 ปี (ค.ศ. 2004 - 2005) มาทำการ วิเคราะห์ความลึกเชิงแสงของฝุ่นละออง โดยใช้กฎของ Bouguer ผลการวิเคราะห์พบว่าลักษณะการ เปลี่ยนแปลงตามฤดูกาลในรอบปีของความลึกเชิงแสงที่ 500 nm ของทั้ง 3 สถานี มีลักษณะคล้ายกัน กล่าวคือจะมีค่าสูงในฤดูแล้ง (พฤศจิกายน – เมษายน) และมีค่าต่ำในฤดูฝน (พฤษภาคม - ตุลาคม) โดยค่าเฉลี่ยทั้งปีของความลึกเชิงแสงที่สถานึกรุงเทพฯ สถานี AIT และสถานึนครปฐม มีค่าเท่ากับ $0.55 \pm 0.31, 0.46 \pm 0.26$ และ 0.47 ± 0.25 ตามลำคับ และจากนั้นผู้วิจัยได้นำค่าความลึกเชิงแสงที่ 2 ความยาวคลื่นมาคำนวณหาสัมประสิทธิ์ความขุ่นมัวของอังสตรอม (eta) ผลการคำนวณพบว่าค่าเฉลี่ย รายปีของ β สถานีกรุงเทพฯ สถานี AIT และสถานีนครปฐม มีค่าเท่ากับ 0.19 \pm 0.12, 0.19 \pm 0.09 และ 0.16 <u>+</u> 0.08 ตามลำคับ ผู้วิจัยยังได้ทำการจำแนกชนิดของฝุ่นละอองทั้ง 3 สถานี โดยใช้ สุดท้ายผู้วิจัยได้ทำการหาการลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่น แบบจำลองการถ่ายเทรังสี 5S ้ละอองโดยพบว่ารังสีรวม และรังสีตรงมีการลดลงเนื่องจากฝุ่นละอองในช่วง 10% - 30% และ 30% -60% ตามถำคับ

ภาควิชาฟิสิกส์	บัณฑิตวิทยาลัยมหาวิทยาลัยศิลปากร	ปีการศึกษา 2548	
ลายมือชื่อนักศึกษา			
าายมือชื่ออาจารย์ผู้ควบคุมวิทยานิพนธ์			

K 46306210 : MAJOR : PHYSICS

KEYWORD: AEROSOLS / OPTICAL DEPTH / TURBIDITY / SOLAR RADIATION /

ATMOSPHERE

SUDARATH SUNTAROPAS : A STUDY OF AEROSOL PROPERTIES IN THE ATMOSPHERE AT BANGKOK AND ITS SUBURBS. THESIS ADVISOR : ASSOC. PROF. SERM JANJAI, Ph. D. 180 pp. ISBN 974-11-6219-7.

In this work, aerosol properties at Bangkok and its suburbs were investigated. The investigation was based the solar spectrum measured at 3 sites namely, Meteorological Department in Bangkok (13.73 °N, 100.57 °E) Asian Institute of Technology (AIT) in Phatumthani (14.08 °N, 100.62 °E) and Silpakorn University in Nakhon Pathom (NP) (13.82 °N, 100.04 °E). For Nakhon Pathom, the solar spectrum was measured using a Multi filter rotating shadowband radiometer. In the case of AIT, the spectral measurement was carried out by Asian Institute of Technology using a sunphotometer with automatic sun tracker. For Bangkok, the spectral measurement was made by the Meteorological Department employing a portable sunphotometer. A two-year period (2004-2005) of solar spectrum data from these three sites was analyzed to obtain the aerosol optical depth by using Bouguer's law. It was found that the seasonal variation of aerosol optical depth at 500 nm from the three sites have a similar pattern, with high values in the dry season (November - April) and low values in the wet season (May - October). The yearly average of the aerosol optical depth at Bangkok, AIT and Nakhon Pathom are 0.55 ± 0.31 , 0.46 ± 0.26 and 0.47 ± 0.25 , respectively. The Angstrom's turbidity coefficient (β) of the three sites was derived from the aerosol optical depth at two wavelengths. The yearly average of β for Bangkok, AIT and Nakhon Pathom were found to be 0.19 ± 0.12 , 0.19 ± 0.09 and 0.16 ± 0.08 , respectively. The types of aerosols at the three sites were identified employing the 5S radiative transfer model. Solar radiation depletion due to aerosols was also determined by using the same radiative transfer model. It was found that the depletion of global and direct radiation due to aerosols were in the ranges of 10%-30% and 30% -60%, respectively

Department of physics	Graduate School, Silpakorn University	Academic Year 2005	
Student's signature			
Thesis Advisor's signature			

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่งของการศึกษาระดับปริญญาวิทยาศาสตรมหาบัณฑิต โดย ผู้วิจัยได้รับทุนสนับสนุนผู้ช่วยวิจัยจากห้องปฏิบัติการวิจัยฟิสิกส์บรรยากาศ ภาควิชาฟิสิกส์ มหาวิทยาลัยศิลปากร ซึ่งผู้วิจัยขอขอบคุณไว้ ณ ที่นี้เป็นอย่างสูง และขอขอบคุณสำนักงาน คณะกรรมการการศึกษา (สกอ.) ที่สนับสนุนค่าใช้จ่ายบางส่วนในการวิจัย

ผู้วิจัยขอขอบคุณรองศาสตราจารย์ คร.เสริม จันทร์ฉาย ซึ่งเป็นอาจารย์ที่ปรึกษาผู้ให้ กำแนะนำด้านวิชาการ พร้อมทั้งจัดหาทุนวิจัย เครื่องมือ อุปกรณ์ และข้อมูล สำหรับใช้ในการ ดำเนินการวิจัย

ผู้วิจัยขอขอบคุณ ศาสตราจารย์ คร.สุรพงศ์ จิระรัตนานนท์ และคุณพิพัฒน์ ชัยวิวัฒน์วรกุล จากสถาบันเทคโนโลยีแห่งเอเชีย คุณสัมฤทธิ์ สุทธิ์ประภา คุณเกษรินทร์ ห่านประเสริฐ และ คุณพาขวัญ วานิชนุเคราะห์ เจ้าหน้าที่ของกรมอุตุนิยมวิทยา ที่ให้ความอนุเคราะห์ข้อมูลที่ จำเป็นต้องใช้ในงานวิจัย รวมทั้งให้คำปรึกษาและแนวคิดในการวิเคราะห์ข้อมูลสเปกตรัมรังสีควง อาทิตย์ และขอขอบคุณ Dr. Mannuel Nunez จากมหาวิทยาลัย Tasmania ประเทศออสเตรเลีย ที่ ได้ให้คำเนนะนำเกี่ยวกับการใช้ radiative transfer model ในการวิเคราะห์ฝุ่นละออง ผู้วิจัย ขอขอบคุณผู้ช่วยศาสตราจารย์ คร.พิชัย นามประกาย ที่กรุณาสละเวลามาเป็นกรรมการสอบ

วิทยานิพนธ์ในครั้งนี้

นอกจากนี้ ผู้วิจัยขอขอบคุณนักวิจัยของห้องปฏิบัติการวิจัยฟิสิกส์บรรยากาศ ภาควิชา ฟิสิกส์ มหาวิทยาลัยศิลปากร ที่ช่วยสนับสนุนงานวิจัยนี้ และขอขอบคุณเจ้าหน้าที่ของภาควิชา ฟิสิกส์ทุกท่าน ที่ช่วยอำนวยความสะดวกและประสานงานต่างๆ

ท้ายสุดนี้กุณก่าและประโยชน์ของวิทยานิพนธ์ฉบับนี้ ผู้วิจัยขอมอบเพื่อตอบแทนพระกุณ บิดา มารดา และคณาจารย์ทุกท่าน ที่ช่วยให้ผู้วิจัยประสบความสำเร็จในการศึกษา

สารบัญ

บทคัดย่อภาษาไทย	٩
บทคัดย่อภาษาอังกฤษ	จ
กิตติกรรมประกาศ	น
สารบัญตาราง	ល្ង
สารบัญรูป	ณ
สัญลักษณ์	น

บทที่

1 บทนำ	1
1.1 ความเป็นมาและความสำคัญของปัญหา	1
 1.2 วัตถุประสงค์ของการวิจัย 	2
1.3 ขอบเขตของงานวิจัย 1.2 หลักการทางวิชาการและงานวิจัยที่เกี่ยวข้อง	2 13 11 15
2.1 ทฤษฎีเกี่ยวกับฝุ่นละอองในบรรยากาศ	3
2.1.1 นิยามและการจำแนกฝุ่นละออง	3
2.1.2 ชนิดของฝุ่นละอองในบรรยากาศ	4
2.1.3 ขนาดและการแจกแจงขนาดของฝุ่นละออง	5
2.1.4 การเกิดฝุ่นละอองในบรรยากาศ	6
2.1.5 กระบวนการเกิดฝุ่นละอองแต่ละชนิด	7
2.1.5.1 ฝุ่นละอองที่เกิดจากน้ำทะเล	7
2.1.5.2 ฝุ่นละอองที่เกิดจากการเปลี่ยนจากก๊าซ	
ไปเป็นอนุภาค	7
2.1.5.3 ฝุ่นละอองที่มีแหล่งกำเนิดจากเปลือกโลก	7
2.1.5.4 ฝุ่นละอองที่เกิดจากกิจกรรมมนุษย์	8
2.1.6 การเปลี่ยนแปลงของฝุ่นละอองในช่วงเวลาที่อยู่	
ในบรรยากาศ	8
2.1.6.1 การเชื่อมติดกัน	8

บทที่	หน้า
2.1.6.2 การกลั่นตัวของไอสารบนอนุภาคของแข็ง	8
2.1.6.3 Oxidation ของสารต่างชนิดกัน	9
2.1.6.4 การโตขึ้นของอนุภากฝุ่นละอองเนื่องจาก	
ความชื้นในบรรยากาศ	9
2.1.6.5 กระบวนการดูดกลืนก๊าซของเมฆ	10
2.1.7 กระบวนการที่ฝุ่นละอองหายออกไปจากบรรยากาศ	10
2.1.7.1 การร่วงหล่นลงสู่พื้นโดยไม่เกี่ยวกับการ	
กลั่นตัว	10
2.1.7.2 การร่วงหล่นลงสู่พื้นโดยเกี่ยวข้องกับการ	
กลั่นตัว	11
2.1.8 การกระจายของฝุ่นละอองตามความสูงจากพื้นโลก	12
2.1.9 การลดลงของรังสีควงอาทิตย์เนื่องจากฝุ่นละออง	14
ปากกับการสึกษาค่าความลึกเชิงแสงของ ผู่นละอองในบรรยากาศ	AM5
3 วิธีการคำเนินการและผล	27
3.1 การหาค่าความลึกเชิงแสงของฝุ่นละออง	27
3.1.1 เครื่องมือ	27
3.1.1.1 การวัดที่กรมอุตุนิยมวิทยาบางนา	
(สถานีกรุงเทพฯ)	27
3.1.1.2 การวัดที่สถาบันเทคโนโลยีแห่งเอเชีย	
(สถานี้AIT)	29
3.1.1.3 การวัดที่คณะวิทยาศาสตร์	
มหาวิทยาลัยศิลปากร (สถานีนครปฐม)	30
3.1.2 ข้อมูล	32
3.1.3 วิธีการ	33
3.1.3.1 ข้อมูลจากการวัคที่สถานีนครปฐม	33
3.1.3.2 ข้อมูลจากการวัคที่สถานี AIT	37
3.1.3.3 ข้อมูลจากการวัคที่สถานึกรุงเทพฯ	38

บทที่		หน้า
3.1.4	การวิเคราะห์ข้อมูล	39
3.1.5	การเปลี่ยนแปลงค่าความลึกเชิงแสงในรอบวัน	45
3.1.6	การเปลี่ยนแปลงค่าความลึกเชิงแสงตามฤดูกาล	
	ในรอบปี	47
3.1.7	การเปลี่ยนแปลงค่า wavelenght exponent	
	ตามฤดูกาลในรอบปี	57
3.1.8	การเปลี่ยนแปลงของสัมประสิทธิ์ความขุ่นมัวของ	
	อังสตรอมตามฤดูกาลในรอบปี	60
3.2 การจำแร	นกชนิดของฝุ่นละออง	64
3.2.1	แบบจำลองการถ่ายเทรังสีของบรรยากาศ	64
3.2.2	ข้อมูลความเข้มรังสีควงอาทิตย์	69
3.2.3	การวิเคราะห์ข้อมูลและผล	71
3.3 การคำน 11777777777	วณการลคลงของรังสีควงอาทิตย์เนื่องจากฝุ่นละออง รังสีควงอาทิตย์ในสภาพท้องฟ้าปราสจากเมฆและ	75 AM5
	ฝุ่นถะออง	75
3.3.2	ข้อมูลความเข้มรังสีควงอาทิตย์	75
3.3.3	การทดสอบความละเอียดถูกต้องของแบบจำลอง	76
3.3.4	วิธีวิเคราะห์ข้อมูลและผล	79
4 บทสรุป		82
บรรณานุกรม		84
ภาคผนวก ก		87
ภาคผนวก ข		92
ภาคผนวก ค		102
ภาคผนวก ง		127
ภาคผนวก จ		152
ภาคผนวก ฉ		177
ประวัติผู้วิจัย		184

สารบัญตาราง

	····	
ตารางที		หน้า
2.1	แสดงอัตราส่วนผสมขององค์ประกอบที่รวมกันเป็นฝุ่นละอองชนิดต่างๆ	5
2.2	แสดงค่าสัมประสิทธิ์ความขุ่นม้วของ Angstrom ในสภาพบรรยากาศต่างๆ	16
2.3	แสดงข้อมูลที่ใช้พิจารณาการลดลงของรังสีควงอาทิตย์ในวันที่ท้องฟ้าปราศจากเมฆ	
	และวันที่ท้องฟ้าขุ่นมัว	24
3.1	แสดงกวามยาวกลื่นของเกรื่ง sunphotometer ที่กรมอุตุนิยมวิทยาบางนา	
	กรุงเทพมหานคร	28
3.2	แสดงความยาวกลื่นของเกรึ่ง sunphotometer ที่สถาบันเทกโนโลยีแห่งเอเชีย	29
3.3	แสดงค่าแฟคเตอร์ของการสอบเทียบของแต่ละความยาวคลื่น	30
3.4	แสดงกวามยาวกลื่นของเกรื่อง Multi-filter rotating shadowband radiometer	
	ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	31
3.5	แสดงรายละเอียดสถานีและข้อมูล	33
	แสดงค่าความลึกเชิงแสงของสถานี้นครปฐมจากข้อมูลเดือนมกราคม ค.ศ. 2004 แสดงแฟกเตอร์สำหรับแก้ผลของระยะทางระหว่างโลกกับ ควงอาทิตย์, S	44
A.2	แสดงค่าปริมาณโอโซนที่มหาวิทยาลัยศิลปากร นครปฐมปี ค.ศ. 2004	94
A.3	แสดงค่าปริมาณโอโซนที่มหาวิทยาลัยศิลปากร นครปฐมปี ค.ศ. 2005	95
A.4	แสดงค่าปริมาณโอโซนที่สถาบันเทคโนโลยีแห่งเอเชีย ปทุมธานีปี ค.ศ. 2004	96
A.5	แสดงค่าปริมาณโอโซนที่สถาบันเทคโนโลยีแห่งเอเชีย ปทุมธานีปี ค.ศ. 2005	97
A.6	แสดงค่าปริมาณโอโซนที่กรมอุตุนิยมวิทยาบางนากรุงเทพมหานกรปี ค.ศ. 2004	98
A.7	แสดงค่าปริมาณโอโซนที่กรมอุตุนิยมวิทยาบางนากรุงเทพมหานครปี ค.ศ. 2005	99
A.8	แสดงค่าปริมาณไอน้ำในบรรยากาศจากข้อมูลตรวจอากาศชั้นบน	
	ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร. ปี ค.ศ. 2004	100
A.9	แสดงค่าปริมาณไอน้ำในบรรยากาศจากข้อมูลตรวจอากาศชั้นบน	
	ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร. ปี ค.ศ. 2005	101
B.1	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมกรากม 2004	
	ของสถานีนครปฐม	103
B.2	แสคงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเคือนกุมภาพันธ์ 2004	
	ของสถานีนครปฐม	104

ตารางที่		หน้า
B.3	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมีนากม 2004	
	ของสถานีนครปฐม	105
B.4	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนเมษายน 2004	
	ของสถานีนครปฐม	106
B.5	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤษภากม 2004	
	ของสถานีนครปฐม	107
B.6	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤษภากม 2004	
	ของสถานีนครปฐม	108
B.7	แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกรกฎากม 2004	
	ของสถานีนครปฐม	109
B.8	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนสิงหากม 2004	
	ของสถานีนครปฐม	110
$1 T n n \overline{B.9}$	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเคือนกันยายน 2004	mã
	ของสถานีนครปฐม////////////////////////////////////	414
B.10	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนตุลากม 2004	
	ของสถานีนครปฐม	112
B.11	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2004	
	ของสถานีนครปฐม	113
B.12	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนชั้นวากม 2004	
	ของสถานีนครปฐม	114
B.13	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมกรากม 2005	
	ของสถานีนครปฐม	115
B.14	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกุมภาพันธ์ 2005	
	ของสถานีนครปฐม	116
B.15	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมีนากม 2005	
	ของสถานีนครปฐม	117
B.16	แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนเมษายน 2005	
	ของสถานีนครปฐม	118

ตารา	งที่	หน้า
B.1	7 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆเดือนพฤษภาคม 2005	
	ของสถานีนครปฐม	119
B.1	8 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมิถุนายน 2005	
	ของสถานีนครปฐม	120
B.1	9 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกรกฎากม 2005	
	ของสถานีนครปฐม	121
В.2	0 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวกลื่นต่างๆเดือนสิงหาคม 2005	
	ของสถานีนครปฐม	122
B.2	1 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวกลื่นต่างๆเดือนกันยายน 2005	
	ของสถานีนครปฐม	123
В.2	2 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆเคือนตุลาคม 2005	
	ของสถานีนครปฐม	124
1 T187	3 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2005 ของสองบีนอรูปสม	
	/ แช่งเข้าผันเป็นของสามเอน อาการกายอาการกายเป็นอาจากเป็นอาจาก 4. แสดงค่าความลึกเชิงแสงของฝ่าละอองที่ความยาวคลื่นต่างๆเดือนธับวาคม 2005	1420
D.2	ของสถาบีบอรุปสบ	126
C	เสดงค่าความลึกเชิงแสงของฝ่นละอองที่ความยาวคลื่นต่างๆเดือบมกราคม 2004	120
0.	ของสถาบี AIT	128
C	 แสดงค่าความลึกเชิงแสงของฝ่นละอองที่ความยาวคลื่นต่างๆเดือนกมภาพันธ์ 2004 	120
	ของสถานี AIT	129
C	3 แสดงค่าความลึกเชิงแสงของฝ่นละอองที่ความยาวคลื่นต่างๆเดือนมีนาคม 2004	
	ของสถานี AIT	130
C	4 แสดงค่าความลึกเชิงแสงของฝ่นละอองที่ความยาวคลื่นต่างๆเดือนเมษายน 2004	100
	ของสถาบี AIT	131
C	5 แสดงค่าความลึกเชิงแสงของฝ่นละอองที่ความยาวคลื่บต่างๆเดือบพถนกาคม 2004	
0.	ของสถาบี AIT	132
C	< แสดงค่าคาบเล็กเซิงแสงของฝ่าละอองที่คาบยาาคลื่บต่างๆเดือบบิกบายบ 2004	1.72
C.		122

ตารางที		หน้า
C.7	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกรกฎากม 2004	
	ของสถานี้ AIT	134
C.8	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนสิงหากม 2004	
	ของสถานี AIT	135
C.9	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกันยายน 2004	
	ของสถานี้ AIT	136
C.10	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนตุลากม 2004	
	ของสถานี AIT	137
C.11	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2004	
	ของสถานี AIT	138
C.12	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนธันวากม 2004	
	ของสถานี AIT	139
n TASA (7.43/	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมกราคม 2005	mã
	ของสถานี้ AIT (0)/ (10) (11) (10) (10) (10) (10) (10) (10)	140
C.14	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกุมภาพันธ์ 2005	
	ของสถานี้ AIT	141
C.15	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมีนากม 2005	
	ของสถานี AIT	142
C.16	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนเมษายน 2005	
	ของสถานี AIT	143
C.17	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤษภากม 2005	
	ของสถานี้ AIT	144
C.18	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมิถุนายน 2005	
	ของสถานี้ AIT	145
C.19	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเคือนกรกฎากม 2005	
	ของสถานี AIT	146
C.20	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเคือนสิงหากม 2005	
	ของสถานี้ AIT	147

ตาราง <i>ท</i> ิ		หน้า
C.21	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกันยายน 2005	
	ของสถานี AIT	148
C.22	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนตุลากม 2005	
	ของสถานี AIT	149
C.23	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2005	
	ของสถานี AIT	150
C.24	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนชั้นวากม 2005	
	ของสถานี้ AIT	151
D.1	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมกรากม 2004	
	ของสถานีกรุงเทพฯ	153
D.2	แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกุมภาพันธ์ 2004	
	ของสถานีกรุงเทพฯ	154
	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเคือนมีนาคม 2004 ของสถานึกรุงเทพฯ	[155]
D.4	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนเมษายน 2004	
	ของสถานีกรุงเทพฯ	156
D.5	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤษภากม 2004	
	ของสถานีกรุงเทพฯ	157
D.6	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมิถุนายน 2004	
	ของสถานีกรุงเทพฯ	158
D.7	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกรกฎากม 2004	
	ของสถานีกรุงเทพฯ	159
D.8	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนสิงหากม 2004	
	ของสถานีกรุงเทพฯ	160
D.9	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกันยายน 2004	
	ของสถานีกรุงเทพฯ	161
D.10	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนตุลากม 2004	
	ของสถานีกรุงเทพฯ	162

ตารางที		หน้า
D.11	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2004	
	ของสถานึกรุงเทพฯ	163
D.12	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนธันวากม 2004	
	ของสถานีกรุงเทพฯ	164
D.13	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมกรากม 2005	
	ของสถานึกรุงเทพฯ	165
D.14	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกุมภาพันธ์ 2005	
	ของสถานีกรุงเทพฯ	166
D.15	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมีนากม 2005	
	ของสถานึกรุงเทพฯ	167
D.16	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนเมษายน 2005	
	ของสถานึกรุงเทพฯ	168
n TASA	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤษภาคม 2005	MS
	ของสถานีกรุงเทพฯ	169
D.18	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนมิถุนายน 2005	
	ของสถานีกรุงเทพฯ	170
D.19	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกรกฎากม 2005	
	ของสถานีกรุงเทพฯ	171
D.20	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนสิงหากม 2005	
	ของสถานีกรุงเทพฯ	172
D.21	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนกันยายน 2005	
	ของสถานีกรุงเทพฯ	173
D.22	แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนตุลากม 2005	
	ของสถานีกรุงเทพฯ	174
D.23	แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนพฤศจิกายน 2005	
	ของสถานีกรุงเทพฯ	175
D.24	แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆเดือนชั้นวากม 2005	
	ของสถานีกรุงเทพฯ	176

สารบัญรูป

รูปที่		หน้า
2.1 การเปลี่ยนแปลงขนาคของอนุภาค Nacl ที่ความชื้นต่างๆ โคยเส้นทึบแสดงการ		
	เพิ่มขึ้น ของขนาดเมื่อความชื้นลดลง	10
2.2	ความเร็วของการร่วงหล่นที่ค่ารัศมีต่างๆ ของฝุ่นละออง	11
2.3	การรวมกันของเมฆกับฝุ่นละอองที่มีความหนาแน่นน้อยและฝุ่นละอองขนาดใหญ่.	12
2.4	การรวมกันของเมฆกับฝุ่นละอองที่มีความหนาแน่นมากและฝุ่นละอองขนาดเล็ก	12
2.5	boundary layer ของบรรยากาศโลก	13
2.6	การเปลี่ยนแปลงของอุณหภูมิของบรรยากาศตามความสูงจากพื้นผิวโลก	13
2.7	ปริมาณและชนิดของฝุ่นละอองที่ระดับความสูงต่างๆ ของบรรยากาศ	14
2.8	แสดงการลดลงของรังสีดวงอาทิตย์เมื่อเคลื่อนที่ผ่านบรรยากาศของโลก	14
2.9	แสดงการแปรค่าของ eta ตามทัศนวิสัยที่ค่า $lpha$ ต่างๆ	17
2.10	แสดงการแปรค่าของ $ au_{a\lambda}$ กับ eta_{m_a} ที่ $lpha$ ต่าง = 1.3 และ 0.7	18
$UIhn_{2,12}^{2\pi}$	เครื่อง sunphotometer	19 20
2.13	แสดงความสัมพันธ์ของค่า turbidity coefficient (B) กับข้อมูลทัศนวิสัย	
	ที่กรุงเทพมหานครและเชียงใหม่	25
3.1	เครื่อง sunphotometer ที่กรมอุตุนิยมวิทยาบางนากรุงเทพมหานคร	28
3.2	เกรื่อง sunphotometer ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	29
3.3	แสดงเครื่อง Multi-filter rotating shadowband radiometer (MFR-7)	
	ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	31
3.4	การตอบสนองของความยาวคลื่นของเครื่อง MFR-7	32
3.5	แสดงการส่งผ่านของรังสีดวงอาทิตย์เนื่องจากองก์ประกอบต่างๆในบรรยากาศ	34
3.6	กราฟความสัมพันธ์ระหว่างค่า ln I _{onλ} กับ m _a	39
3.7	แสดงการเปลี่ยนแปลงความเข้มรังสีรวมและรังสีตรงของควงอาทิตย์ในวันที่ท้องฟ้า	
	ปราศจากเมฆ (25 กุมภาพันธ์ 2004)	40
3.8 แสดงลักษณะท้องฟ้าจาก sky camera ในวันที่ท้องฟ้าปราศจากเมฆ		
3.9	แสดงลักษณะท้องฟ้าจาก sky camera ในวันที่ท้องฟ้ามีเมฆ	41

	ע	
ห	นา	

3.10	แสดงตัวอย่างการแปรค่าความลึกเชิงแสงของฝุ่นละออง ($ au_{a\lambda}$) โมเลกุลอากาศ($ au_{r\lambda}$)	
	และ โอโซน ($ au_{ m o\lambda}$) กับความยาวคลื่นที่เวลาต่างๆ ของข้อมูลสถานีนครปฐม	
	วันที่ 25 กุมภาพันธ์ 2004	42
3.11	แสดงตัวอย่างการแปรก่าความลึกเชิงแสงของฝุ่นละออง ($ au_{a\lambda}$) กับความยาวคลื่นที่	
	เวลาต่างๆ ของข้อมูลสถานีนครปฐม วันที่ 25 กุมภาพันธ์ 2004	43
3.12	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละอองที่เปลี่ยนแปลงในรอบวันของ	
	มหาวิทยาลัยศิลปากร จังหวัดนครปฐม ในวันที่ 3 กุมภาพันธ์ ค.ศ. 2005	45
3.13	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละอองที่เปลี่ยนแปลงในรอบวันของ	
	สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี ในวันที่ 14 เมษายน ค.ศ. 2004	46
3.14	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละอองที่เปลี่ยนแปลงในรอบวันของ	
	กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานครในวันที่ 19 เมษายน ค.ศ. 2004	46
3.15	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลในรอบปี	ð
	ที่มหาวิทยาลัยศิลปากร จังหวัดนกร ปฐม	115
	ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	48
3.17	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลในรอบปี	
	ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	48
3.18	แสดงการเปรียบเทียบการเปลี่ยนแปลงความลึกเชิงแสงของ 3 สถานี	49
3.19	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 413 นาโนเมตร ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	50
3.20	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 613 นาโนเมตร ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	50
3.21	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 671 นาโนเมตร ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	51
3.22	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 864 นาโนเมตร ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	51

รูปที่

รูปที่		หน้า
3.23	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	รวมทุกความยาวคลื่นตั้งแต่ 413, 500, 613, 671 และ864 นาโนเมตร	
	ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	52
3.24	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 368นาโนเมตร ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	52
3.25	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 675นาโนเมตร ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	53
3.26	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 778นาโนเมตร ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	53
3.27	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	รวมทุกความยาวกลื่นตั้งแต่ 368, 500, 675 และ778 นาโนเมตร	
	ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	54
JIM 191	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่ ความยาวคลื่น 380 นาโนเมตร ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	15415
3.29	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 440 นาโนเมตร ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	55
3.30	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 670 นาโนเมตร ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	55
3.31	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	ความยาวคลื่น 870 นาโนเมตร ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	56
3.32	แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD)ตามฤดูกาลที่	
	รวมทุกความยาวกลื่นตั้งแต่ 380,440, 500, 670 และ870 นาโนเมตร	
	ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	56
3.33	แสดงการเปลี่ยนแปลงของ wavelenght exponent ($lpha$)ตามฤดูกาลในรอบปีที่	
	มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	57
3.34	แสดงการเปลี่ยนแปลงของ wavelenght exponent ($lpha$)ตามฤดูกาลในรอบปีที่	
	สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	58

	J.		
	3.35	แสดงการเปลี่ยนแปลงของ wavelenght exponent (α)ตามฤดูกาลในรอบปีที่	
		กรมอุตุนิยมวิทยา บางนา กรุงเทพมหานคร	58
	3.36	แสดงการกระจายของ wavelenght exponent (α) ที่มหาวิทยาลัยศิลปากร	
		จังหวัดนครปฐม	59
	3.37	แสดงการกระจายของ wavelenght exponent ($lpha$)ที่สถาบันเทคโนโลยีแห่งเอเชีย	
		จังหวัดปทุมธานี	59
	3.38	แสดงการกระจายของ wavelenght exponent ($lpha$) ที่กรมอุตุนิยมวิทยาบางนา	
		กรุงเทพมหานคร	60
	3.39	แสดงการเปลี่ยนแปลงสัมประสิทธิ์ความขุ่นมัวของอังสตรอม ($lpha$)ที่เปลี่ยนแปลง	
		ตามฤดูกาลในรอบปี.ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	61
	3.40	แสดงการเปลี่ยนแปลงสัมประสิทธิ์ความขุ่นมัวของอังสตรอม ($lpha$)ที่เปลี่ยนแปลง	
		ตามฤดูกาลในรอบปี.ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	61
IJM	3.41	แสดงการเปลี่ยนแปลงสัมประสิทธิ์ความขุ่นมัวของอังสตรอม (X)ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปี. ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	
	3.42	แสดงการกระจายสัมประสิทธิ์ความขุ่นมัวของอังสตรอม ($lpha$) ที่เปลี่ยนแปลงตาม	
		ฤดูกาลในรอบปี.ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	63
	3.43	แสดงการกระจายสัมประสิทธิ์กวามขุ่นมัวของอังสตรอม ($lpha$) ที่เปลี่ยนแปลงตาม	
		ฤดูกาลในรอบปี.ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัคปทุมธานีธานี้	63
	3.44	แสดงการกระจายสัมประสิทธิ์กวามขุ่นมัวของอังสตรอม ($lpha$) ที่เปลี่ยนแปลงตาม	
		ฤดูกาลในรอบปี. ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	64
	3.45	แสดงคาวเทียม Earth probe (EP)	65
	3.46	แสดงกวามสัมพันธ์ระหว่างกวามลึกเชิงแสงของฝุ่นละอองกับกวามยาวกลื่นที่	
		วลาต่างๆ ในรอบวัน	68
	3.47	แสดงการเปลี่ยนแปลงระหว่างกวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่น	
		550 นาโนเมตร ในรอบวัน	69
	3.48	แสดงเครื่องไพราโนมิเตอร์สำหรับวัดความเข้มรังสีดวงอาทิตย์ สถานึกรุงเทพฯ	70
	3.49	แสดงเครื่องไพราโนมิเตอร์สำหรับวัดความเข้มรังสีดวงอาทิตย์ของสถานี AIT	70
	3.50	แสดงเครื่องไพราโนมิเตอร์สำหรับวัดความเข้มรังสีดวงอาทิตย์ของสถานีนครปฐม	71

รูปที่		หน้า
3.51	แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ชนิดของ	
	ฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานีนครปฐม	72
3.52	แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ชนิดของ	
	ฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานี AIT	73
3.53	แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ชนิดของ	
	ฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานี กรุงเทพฯ	74
3.54	แสดงเครื่องไพเฮริโอมิเตอร์สำหรับวัดความเข้มรังสีรวมของควงอาทิตย์ของ	
	กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร	76
3.55	แสดงเครื่องไพเฮริโอมิเตอร์สำหรับวัดความเข้มรังสีรวมของควงอาทิตย์ของ	
	สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	76
3.56	แสดงการเปรียบเทียบก่ากวามเข้มรังสีตรงของควงอาทิตย์ที่ได้จากแบบจำลอง 5S	
	โดยกำหนดให้ฝุ่นละอองเป็นแบบ continental และจากการวัด ที่นครปฐมในวันที่	
11120	14 เมษายน ค. ศ. 2004 แสดงการเปรียบเทียบค่าความเข้มรังสีรวมของควงอาทิตย์ที่ได้จากแบบจำลอง 55.	- 77 -
	โดยกำหนดให้ฝุ่นละอองเป็นแบบ continental และจากการวัด ที่นครปฐมในวันที่	
	้ ^{~~} 14 เมษายน ค.ศ. 2004	77
3.58	แสดงการเปรียบเทียบค่าความเข้มรังสีตรงของควงอาทิตย์ที่ได้จากแบบจำลอง 5S	
	โดยกำหนดให้ฝุ่นละอองเป็นแบบ urban และจากการวัด ที่ AIT ในวันที่	
	3 พฤศจิกายน ค.ศ. 2004	78
3.59	แสดงการเปรียบเทียบค่าความเข้มรังสีรวมของควงอาทิตย์ที่ได้จากแบบจำลอง 5S	
	โดยกำหนดให้ฝุ่นละอองเป็นแบบ urban และจากการวัด ที่ AIT ในวันที่	
	3 พฤศจิกายน ค.ศ. 2004	78
3.60	แสดงอัตราส่วนการลคลงของพลังงานรังสีตรงเนื่องจากฝุ่นละออง (D _B)ในช่วงปี	
	ค.ศ. 2004-2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	80
3.61	แสดงอัตราส่วนการลคลงของพลังงานรังสีตรงเนื่องจากฝุ่นละออง (D _B)ในช่วงปี	
	ค.ศ. 2004-2005 ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี	80
3.62	้ แสดงอัตราส่วนการลคลงของพลังงานรังสีรวมเนื่องจากฝุ่นละออง (D _c)ในช่วงปี	
	ค.ศ. 2004-2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม	81

รูปที่	
3.63	แสคงอัตราส่วนการลคลงของพลังงานรังสีรวมเนื่องจากฝุ่นละออง (D _G)
	ค.ศ. 2004-2005 ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

หน้า

81

- E.2 แสดงการเปรียบเทียบค่าความเข้มรังสีตรงของดวงอาทิตย์ที่ได้จากการวัดซึ่งเป็น กรณีที่บรรยากาศมีฝุ่นละอองและจากการคำนวณกรณีบรรยากาศไม่มีฝุ่นละออง ของของสถาบันเทคโนโลยีแห่งเอเชีย ปทุมธานี.วันที่ 3 พฤศจิกายน ค.ศ. 2004..... 178

- E.5 แสดงการเปรียบเทียบก่าความเข้มรังสีตรงของดวงอาทิตย์ที่ได้จากการวัดซึ่งเป็น กรณีที่บรรยากาศมีฝุ่นละอองและจากการคำนวณกรณีบรรยากาศไม่มีฝุ่นละออง
 - ของมหาวิทยาลัยศิลปากร จังหวัดนครปฐมวันที่ 14 เมษายน ค.ศ. 2004...... 181 E.6 แสดงการเปรียบเทียบค่าความเข้มรังสีตรงของดวงอาทิตย์ที่ได้จากการวัดซึ่งเป็น กรณีที่บรรยากาศมีฝุ่นละอองและจากการคำนวณกรณีบรรยากาศไม่มีฝุ่นละออง
 - ของสถาบันเทคโนโลยีแห่งเอเชีย ปทุมธานี.วันที่ 3 พฤศจิกายน ค.ศ. 2004..... 181 E.7 แสดงอัตราส่วนการลดลงของรังสีรวมของควงอาทิตย์เนื่องจากฝนละอองในช่วงปี
 - ค.ศ. 2004-2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม......
 182
 E.8 แสดงอัตราส่วนการลดลงของรังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละอองในช่วงปี
 - ค.ศ. 2004-2005 ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี...... 183

สัญลักษณ์

	С	= จำนวนอนุภากทั้งหมด
	$D_{\scriptscriptstyle B}$	= อัตราส่วนการลดลงของพลังงานแสงอาทิตย์รังสีตรงเนื่องจากฝุ่นละออง
	D_{G}	= อัตราส่วนการลดลงของพลังงานแสงอาทิตย์รังสีรวมเนื่องจากฝุ่นละออง
	$E_{_{o\lambda}}$	= ค่าแฟกเตอร์ของการสอบเทียบของหัววัคในแต่ละความยาวกลื่น
	E_{λ}	= ค่าที่บันทึกได้จากเครื่องวัดเป็นค่าความต่างศักย์มีหน่วยเป็นมิลลิโวลต์ (mV)
	f(r)dr	= ความน่าจะเป็นที่จะพบอนุภาคของฝุ่นละอองที่มีรัศมีอยู่ในช่วง <i>r</i> ถึง <i>r</i> + <i>dr</i>
	g	= ความเร่งเนื่องจากแรงโน้มถ่วงของโลก (980 <i>cm / s</i> ²)
	G_n	= ความเข้มรังสีตรงที่ตกตั้งฉากกับระนาบที่ตั้งฉากกับทิศทางของรังสี
	G_n^*	= ค่าเฉลี่ยของความเข้มรังสีดวงอาทิตย์ในบรรยากาศที่ปราศจากฝุ่นละออง
	G_{sc}	= solar constant
	$H_{\scriptscriptstyle B,meas}$	= พลังงานแสงอาทิตย์รังสีตรงที่ได้จากการวัด (MJ)
	H _{B,mod el}	= พลังงานแสงอาทิตย์รังสีตรงที่ได้จากแบบจำลอง 5S (MJ)
IJħ	$H_{G,meas}$ $H_{G,mod\ el}$	 พลังงานแสงอาทิตย์รังสีรวมที่ได้จากการวัด (MJ) พลังงานแสงอาทิตย์รังสีรวมที่ได้จากแบบจำลอง 5S (MJ)
	$I_{n\lambda}$	= ค่าความเข้มรังสีตรงเฉพาะขณะ (irradiance) ตกตั้งฉากกับระนาบการเคลื่อนที่ของ
		ควงอาทิตย์
	$I_{on\lambda}$	= ค่าความเข้มรังสีควงอาทิตย์เฉพาะขณะนอกบรรยากาศโลก ซึ่งตกตั้งฉากกับระนาบ
		ของควงอาทิตย์
	$K_{_{o\lambda}}$	= extinction coefficient $vovlollolloul(cm^{-1})$
	1	= ปริมาณโอโซน(cm)
	М	= mixing ratio ที่ความดัน P
	m_a	= มวลโมเลกุลของอากาศ
	M_{air}	= มวลอากาศแห้ง
	M_{i}	= mixing ratio ของบรรยากาศชั้นที่ i
	m_r	= มวลอากาศที่ความกคคันและอุณหภูมิมาตรฐาน (NTP)
	M_{v}	= มวลไอน้ำ
	Р	= ความคันบรรยากาศที่ความสูงใคๆ [mbar]
	P_i	= ความคันบรรยากาสชั้นที่ i โดยที่ i =1,2,3,,n

	P_0	= ความดันบรรยากาศที่พื้นผิวโลก [mbar]
	P_{v}	= ความดันไอน้ำ [mbar]
	P_{vs}	= ความคันใอน้ำอิ่มตัว (saturated vapour water) [mbar]
	r	= รัศมีของอนุภาคของฝุ่นละออง
	r_g	= ค่าเฉลี่ยรัศมีเชิงเรขาคณิต
	rh	= ความชื้นสัมพัทธ์ (%)
	S	 แฟคเตอร์สำหรับแก้ผลของระยะทางระหว่างโลกกับดวงอาทิตย์
	S(r)	= พื้นที่ผิวของอนุภาค
	$S_{e\!f\!f}(r)$	= พื้นผิวขังผล
	Т	= อุณหภูมิของอากาศ (°C)
	V_t	= ความเร็วสุดท้าย (m/s)
	vis	= ค่าทัศนวิสัย (km)
	W	= ปริมาณไอน้ำในบรรยากาศ [cm]
	\overline{x}	= ก่าเฉลี่ยของรัศมีอนุภาก
IJħ		= Wavelength exponent AS and a start of the
	λ	= ความยาวคลื่น (μm)
	λ_1	= mean free path
	θ_z	= มุมซินิธของควงอาทิตย์
	ρ	= แฟคเตอร์สำหรับแก้ผลของการเปลี่ยนแปลงของโลกกับควงอาทิตย์
	σ	= กวามเบี่ยงเบนมาตราฐาน
	$\sigma_{_g}$	= ค่ามาตราฐานเชิงเรขาคณิต
	$ au_{a\lambda}$	= สัมประสิทธิ์การส่งผ่านรังสีดวงอาทิตย์ของฝุ่นละอองที่ความยาวกลื่น λ ต่าง ๆ
	$ au'_{a\lambda}$	= ค่าความลึกเชิงแสงของฝุ่นละอองในบรรยากาศเนื่องจากการกระเจิงและ
		การดูดกลื่นรังสีดวงอาทิตย์
	$ au_{CDA}^{\prime}$	= ความลึกเชิงแสงของบรรยากาศกรณีที่ปราศจากฝุ่นละออง
	$ au_{g\lambda}'$	= ค่าความลึกเชิงแสง (optical depth) ของก๊าซเนื่องจากการกระเจิงของ
		รังสีควงอาทิตย์
	$ au'_{o\lambda}$	= ค่าความถึกเชิงแสงของโอโซนเนื่องจากการดูคกถิ่นของรังสีควงอาทิตย์

- τ'_{rλ} = ค่าความลึกเชิงแสงของโมเลกุลอากาศเนื่องจากการกระเจิงรังสีควงอาทิตย์ (Rayleigh scattering)
- τ'_{wλ} = ค่าความลึกเชิงแสงของไอน้ำในบรรยากาศเนื่องจากการดูดกลืนรังสีดวงอาทิตย์
- τ'_{λ} = ค่าความลึกเชิงแสงของบรรยากาศที่ความยาวคลื่น λ ต่างๆ

บหาวิทยาลัยศีลปากร สงวนสิบสิทธิ์

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ผุ่นละอองในบรรยากาศเป็นอนุภาคของแข็งที่แขวนลอยอยู่ในบรรยากาศ เกิดขึ้นจาก กระบวนการในธรรมชาติและกิจกรรมของมนุษย์ กรณีการเกิดจากกระบวนการในธรรมชาติที่สำคัญ ใด้แก่ การระเบิดของภูเขาไฟ การพัดพาอนุภาคของแข็งจากพื้นดินโดยกระแสลม และละอองเกลือ จากทะเล เป็นต้น สำหรับฝุ่นละอองที่เกิดจากกิจกรรมของมนุษย์ที่สำคัญ ได้แก่ ฝุ่นละอองที่ปล่อยจาก โรงงานอุตสาหกรรม ยวดยาน และการเผาไหม้ชีวะมวลต่างๆ ฝุ่นละอองในบรรยากาศมีปริมาณมาก น้อยเปลี่ยนแปลงไปตามสถานที่ และตามฤดูกาลในรอบปี เมื่อรังสีดวงอาทิตย์เดินทางผ่านบรรยากาศ โลกลงมายังพื้นดิน จะถูกฝุ่นละอองดูดกลืนและกระเงิง ทำให้รังสีที่ตกกระทบพื้นผิวโลกมีก่าลดลง ฝุ่นละอองจึงมีผลต่อสมดุลของพลังงานในบรรยากาศของโลก ซึ่งส่งผลกระทบต่อสภาวะอากาศ บรรยากาศโลก นอกจากนี้ฝุ่นละอองในบรรยากาศยังเป็นแกนกลาง (nucleus) ของการกลั่นตัวเป็น

หยดน้ำของไอน้ำในบรรยากาศ ฝุ่นละอองจึงมีผลต่อการเกิดเมฆและฝน ซึ่งมีผลกระทบต่อระบบ นิเวศน์และกิจกรรมทางเศรษฐกิจของมนุษย์ ทางด้านสุขภาพของมนุษย์ ฝุ่นละอองขนาดเล็กยัง ก่อให้เกิดอันตรายต่อระบบการหายใจ และเป็นสาเหตุของการเกิดภูมิแพ้ในระบบทางเดินหายใจด้วย

เนื่องจากในช่วงประมาณ 1 ศตวรรษที่ผ่านมา ประชากรของโลกเพิ่มมากขึ้น มีการ เปลี่ยนแปลงพื้นผิวโลกเพื่อใช้ในการเกษตรและที่อยู่อาศัย ชุมชนเมืองขยายตัวเกิดการผลิตแบบ อุตสาหกรรมและมียวดยานพาหนะในการขนส่ง สิ่งเหล่านี้ได้ก่อให้เกิดการปลดปล่อยฝุ่นละอองขึ้นสู่ บรรยากาศเป็นอย่างมาก ซึ่งจะส่งผลในทางลบต่อสภาวะของบรรยากาศโลก จึงมีความจำเป็นอย่างยิ่ง ที่จะต้องทำการศึกษาและการติดตามการเปลี่ยนแปลงปริมาณฝุ่นละอองในบรรยากาศ โดยเฉพาะใน บริเวณชุมชนเมืองขนาดใหญ่ เช่น กรุงเทพมหานกรและปริมณฑล

โดยทั่วไปการศึกษาฝุ่นละอองสามารถทำได้โดยการดูดเก็บตัวอย่างในบริเวณพื้นดิน แต่วิธีการ ดังกล่าวสามารถทำได้เฉพาะจุดที่บริเวณพื้นผิวโลกเท่านั้น อย่างไรก็ตามการศึกษาปริมาณและสมบัติ ของฝุ่นละอองตลอดทั้งกอลัมน์ของอากาศ สามารถดำเนินการได้โดยการวิเคราะห์กวามเข้มรังสีดวง- อาทิตย์ที่เดินทางผ่านบรรยากาศมายังพื้นผิวโลก ซึ่งจะสามารถศึกษาธรรมชาติของฝุ่นละอองได้ทั้ง กอลัมน์ของบรรยากาศ การคำเนินการดังกล่าวจะต้องใช้อุปกรณ์วัดสเปกตรัมรังสีดวงอาทิตย์หรือ sunphotometer สำหรับกรณีของประเทศไทยการศึกษาฝุ่นละอองในลักษณะดังกล่าวยังมีก่อนข้าง จำกัด ดังนั้นในงานวิจัยนี้ผู้วิจัยจึงเสนอที่จะทำการศึกษาฝุ่นละอองในบริเวณกรุงเทพมหานครและ ปริมณฑล เพื่อให้ทราบธรรมชาติของฝุ่นละอองในบริเวณนี้ต่อไป

1.2 วัตถุประสงค์ของการวิจัย

งานวิจัยนี้มีวัตถุประสงค์ดังนี้

- 1) เพื่อหาค่าความลึกเชิงแสงของฝุ่นละอองในบรรยากาศของกรุงเทพมหานครและปริมณฑล
- เพื่อจำแนกชนิดของฝุ่นละอองในบริเวณดังกล่าว
- 3) เพื่อหาการลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่นละอองในบริเวณดังกล่าว

1.3_____ขอบเขตของงานวิจัย

ในงานวิจัยนี้จะทำการสึกษาธรรมชาติของฝุ่นละอองเฉพาะที่กรุงเทพมหานครและ ปริมณฑล ทั้งนี้เพราะเป็นบริเวณที่เป็นชุมชนเมืองขนาดใหญ่ และมีการติดตั้งเครื่องวัดสเปกตรัมรังสึ ดวงอาทิตย์ ซึ่งสามารถนำมาใช้วิเกราะห์หาสมบัติของฝุ่นละอองได้

บทที่ 2 หลักการทางวิชาการและงานวิจัยที่เกี่ยวข้อง

เนื่องจากค่าความลึกเชิงแสงเนื่องจากฝุ่นละอองในบรรยากาศ เป็นผลมาจากฝุ่นละอองที่ กระจายในบรรยากาศ ดังนั้นในบทนี้จะกล่าวถึงสมบัติทางฟิสิกส์ของฝุ่นละอองในบรรยากาศ และ งานวิจัยที่เกี่ยวข้องกับการศึกษาค่าความลึกเชิงแสงเนื่องจากฝุ่นละออง

2.1 ทฤษฎีเกี่ยวกับฝุ่นละอองในบรรยากาศ

2.1.1 นิยามและการจำแนกฝุ่นละออง

ฝุ่นละออง (aerosol) ในที่นี้ หมายถึง อนุภาคของแข็ง หรือของเหลว หรือของผสมระหว่าง ของแข็งและของเหลวที่แขวนลอย อยู่ในอากาศ แต่จะไม่รวมถึงเมฆและหมอกซึ่งมีลักษณะเป็น อนุภาคเช่นเดียวกัน ฝุ่นละอองมีทั้งที่เกิดจากธรรมชาติและเกิดจากกิจกรรมของมนุษย์ ฝุ่นละอองที่ เกิดจากธรรมชาติแบ่งได้เป็น ฝุ่นละอองที่มาจากเปลือกโลก (crustal aerosol) ฝุ่นละอองที่มี แหล่งกำเนิดจากน้ำทะเล (maritime aerosol)

ฝุ่นละอองที่มีแหล่งกำเนิดมาจากเปลือกโลกจะเกิดจากการกัดกร่อนของลมต่อเปลือกโลก ซึ่งอาจเป็นพื้นดิน ทรายหรือหิน เป็นต้น โดยจะฟุ้งกระจายไปตามกระแสลม เราเรียกฝุ่นละอองที่ เกิดจากการฟุ้งกระจายของดินนี้ว่า "ฝุ่นละอองแบบ continental " ซึ่งรวมถึงฝุ่นละอองที่เกิดจาก การเผาไหม้ ชีวะมวลจะเป็นการเปลี่ยนแปลงก๊าซจากการเผาไหม้กลายเป็นอนุภาคของเล้าถ่านเกิด เป็นฝุ่นละออง (gas-to-particle conversion) ซึ่งฟุ้งกระจายในบรรยากาศ ส่วนฝุ่นละอองที่มี แหล่งกำเนิดจากน้ำทะเลจะเกิดจากการที่น้ำทะเลกระเซ็นเป็นฝอยลอยขึ้นไปในอากาศ เนื่องจากลม และคลื่น และมีการระเหยเป็นอนุภาคเล็กๆ ของเกลือแทรกตัวอยู่ในบรรยากาศ และมืองก์ประกอบ ของหยดน้ำเล็กๆ เหนือพื้นผิวทะเลหรือมหาสมุทรจะเรียกฝุ่นละอองแบบนี้ว่า " ฝุ่นละอองแบบ maritime "

ฝุ่นละอองที่เกิดจากกิจกรรมมนุษย์ส่วนใหญ่ มีแหล่งกำเนิดจากโรงงานอุตสาหกรรมและ ยวดยานพาหนะต่างๆ โดยฝุ่นละอองจากอุตสาหกรรมจะเกิดจากการเผาไหม้เชื้อเพลิงที่ใช้ใน กระบวนการต่างๆ และเกิดจากกระบวนการผลิตที่มีการบดของแข็งให้ละเอียดเป็นอนุภาคเล็กๆ เช่น ฝุ่นละอองจากโรงสี และโรงโม่หิน เป็นต้น ฝุ่นละอองที่เกิดจากเขม่าที่ได้จากการเผาไหม้ เชื้อเพลิงในเครื่องยนต์และถูกปลดปล่อยออกมาสู่บรรยากาศภายนอกเราจะเรียกฝุ่นที่เกิดจากชุมชน เมืองว่า " ฝุ่นละอองแบบ urban "

เนื่องจากฝุ่นละอองแต่ละแบบจะมีคุณสมบัติในการดูดกลืนและการกระเจิงรังสีดวงอาทิตย์ แตกต่างกัน ทั้งรังสีตรงและรังสีรวมของดวงอาทิตย์ ดังนั้นฝุ่นละอองจึงทำให้รังสีดวงอาทิตย์ที่ เกลื่อนที่ผ่านบรรยากาศมีค่าลดลง โดยเฉพาะอย่างยิ่งในบริเวณที่บรรยากาศมีมลพิษสูง จาก การศึกษาของสายันต์ โพธิ์เกตุ (2542) พบว่า ฝุ่นละอองมีบทบาทสำคัญที่ทำให้ความเข้มรังสี ดวงอาทิตย์ลดลงถึง 20% นอกจากนี้ฝุ่นละอองยังส่งผลกระทบต่อสิ่งแวดล้อมและสุขภาพอีกด้วย

2.1.2. ชนิดของฝุ่นละอองในอากาศ

Tanre et al.(1987) ได้จำแนกองค์ประกอบของฝุ่นละอองดังนี้

- 1. dust-like component (D.L) เป็นองค์ประกอบที่มีลักษณะเป็นผงฝุ่น
- 2. oceanic component (O.C) เป็นองค์ประกอบที่มาจากทะเล จำพวกละอองน้ำ
- 3. water-soluble component (W.S) เป็นองค์ประกอบที่เป็นสารละลายน้ำได้
- 4. soot component (S.O) เป็นองค์ประกอบจำพวกเขม่า

เมื่อองก์ประกอบทั้ง 4 ผสมกันกิดเป็นเปอร์เซนต์โดยปริมาตรต่างๆ กัน Tanre et al.(1987) ได้จำแนกฝุ่นละอองในอากาศเป็น 3 แบบ คือ

- แบบ continental เป็นฝุ่นละอองที่มาจากภาคพื้นทวีปซึ่งเป็นการผสมกันของ องค์ประกอบต่างๆ ดังนี้คือ องค์ประกอบที่มีลักษณะเป็นผงฝุ่น (D.L) 70% องค์ประกอบที่เป็นสารละลายน้ำได้ (W.S) 29% และองค์ประกอบจำพวกเขม่าควัน (S.O) 1%
- แบบ maritime เป็นฝุ่นละอองที่มาจากทะเล ประกอบด้วยองค์ประกอบที่เป็น สารละลายน้ำได้ (W.S) 5% และองค์ประกอบที่มาจากทะเล (O.C) 95%
- แบบ urban เป็นฝุ่นละอองที่มาจากเมืองเป็นการผสมกันขององค์ประกอบต่างๆ ดังนี้คือ องค์ประกอบที่มีลักษณะเป็นผงฝุ่น (D.L) 17% องค์ประกอบที่เป็น สารละลายน้ำได้ (W.S) 61% และองค์ประกอบจำพวกเขม่าควัน (S.O) 22%

	Component (%)				
TYPE	dust-like	water-soluble	oceanic	soot	
1112	component	component	component	component	
	(D.L)	(W.S)	(O.C)	(S.O)	
CONTINENTAL	0.70	0.29	0.00	0.01	
MARITIME	0.00	0.05	0.95	0.00	
URBAN	0.17	0.61	0.00	0.22	

ตารางที่ 2.1 แสดงอัตราส่วนผสมขององก์ประกอบที่รวมกันเป็นฝุ่นละอองชนิดต่างๆ

2.1.3. ขนาดและการแจกแจงขนาดของฝุ่นละออง

ฝุ่นละอองมีขนาดที่แตกต่างกัน ขึ้นกับแหล่งกำเนิดและการเปลี่ยนแปลงทางเกมีและฟิสิกส์ ในระหว่างที่ฟุ้งกระจายในบรรยากาศ เดิมมีการจำแนกฝุ่นละอองออกเป็น 3 ประเภทได้แก่

- 1. Aitken nuclei particles มีรัศมีน้อยกว่า 0.1µm
- 2. Large particles มีรัศมิในช่วง 0.1-1 μm

3. Giant particles มีรัศมีมากกว่า 1µm ในปัจจุบันมีการแบ่งขนาดของฝุ่นละอองเป็นแบบหยาบ (coarse particle) และชนิด ละเอียด (fine particle) โดยขีดแบ่งฝุ่นละออง 2 ชนิด จะอยู่ที่ประมาณ 0.5µm ฝุ่นละอองชนิด ละเอียดเกิดจากการเปลี่ยนแปลงจากก๊าซไปเป็นอนุภาก (gas-to-particle) ในกระบวนการเผาไหม้ ต่างๆ ส่วนฝุ่นละอองชนิดหยาบเป็นฝุ่นละออง ที่มีแหล่งกำเนิดจากเปลือกโลกและจากน้ำทะเล

ฝุ่นละอองที่มีแหล่งกำเนิดเดียวกันโดยทั่วไปจะมีขนาดไม่เท่ากัน ในอดีตที่ผ่านมาได้มี การศึกษาการแจกแจงขนาดของฝุ่นละออง (size distribution) และได้มีการเสนอสมการการแจก แจงขึ้นมาหลายแบบ โดยสมการการแจกแจงที่นิยมใช้กันอย่างกว้างขวางได้แก่ การแจกแจงแบบ lognormal (Reist ,1993)

$$f(r)dr = \frac{C}{r\sqrt{2\pi\ln\sigma_g}} \exp\left\{\frac{-\ln(r/r_g)}{2\ln^2\sigma_g}\right\}dr$$
(2.1)

เมื่อ

f(r)dr เป็นความน่าจะเป็นที่จะพบอนุภาคของฝุ่นละอองที่มีรัศมี อยู่ในช่วง r ถึงr+dr

r เป็นรัศมีของอนุภาคของฝุ่นละออง

- C เป็นจำนวนอนุภาคทั้งหมด
- r, เป็นก่าเฉลี่ยรัศมีเชิงเรขากณิต
- σ_{g} เป็นค่ามาตราฐานเชิงเรขาคณิต

ค่า r ูหาได้จากสมการ

$$\bar{x} = \ln r_o \tag{2.2}$$

เมื่อ \overline{x} เป็นค่าเฉลี่ยของรัศมีอนุภาค

และค่า $\sigma_{
m g}$ หาใด้จากสมการ

$$\sigma = \ln \sigma_g \tag{2.3}$$

เมื่อ _σเป็นกวามเบี่ยงเบนมาตราฐาน ปาการที่เป็นกวามเบี่ยงเบนมาตราฐาน 2.1.4. การเกิดฝุ่นละอองในบรรยากาศ

Warneck (1988) ได้ศึกษาอัตราการเกิดของฝุ่นละอองในบรรยากาศที่เกิดจากธรรมชาติและ มนุษย์ ซึ่งฟุ้งกระจายในบรรยากาศชั้นโทรโพสเฟียร์ (troposphere) จากการศึกษาพบว่าการ ปลดปล่อยฝุ่นละอองของโลกขึ้นสู่บรรยากาศ (aerosol emission) มีก่าประมาณ 2,400 Tg/ปี (Tg = หน่วยของมวลก่าเท่ากับ 10¹² กรัม) ในจำนวนนี้ประมาณกรึ่งหนึ่งหรือประมาณ 1,000 Tg/ปี มีแหล่งกำเนิดมาจากทะเล และประมาณ 500 Tg/ปี มีแหล่งกำเนิดมาจากเปลือกโลก กระบวนการ ตามธรรมชาติที่ก่อให้เกิดอนุภาคของซัลเฟต (sulphate particles) ทำให้เกิดฝุ่นละอองในบรรยากาศ ประมาณ 240 Tg/ปี ฝุ่นละอองที่เป็นอนุภาคซัลเฟตที่เกิดจากกิจกรรมมนุษย์ มีก่าประมาณ 220 Tg/ปี นอกจากนี้การปลดปล่อยฝุ่นละอองจากกิจกรรมของมนุษย์ เช่น จากยวดยานพาหนะและ กระบวนการในอุตสาหกรรมมีก่าประมาณ 130 Tg/ปี ซึ่งถือว่าน้อยเมื่อเทียบกับฝุ่นละอองที่มีอยู่ใน บรรยากาศชั้นโทรโพสเฟียร์

2.1.5. กระบวนการเกิดฝุ่นละอองแต่ละชนิด

2.1.5.1 ฝุ่นละอองที่เกิดจากน้ำทะเล (maritime aerosol)

้ฝุ่นละอองที่เกิดจากน้ำทะเลจะเป็นอนุภาคของเกลือ (sea-salt aerosol) ซึ่งเกิดจาก การแตกของฟองอากาศที่ผิวทะเล ฟองเหล่านี้อาจเกิดขึ้นจากกระบวนการทางชีววิทยา ปฏิกิริยาเคมี หรือการกระเพื่อมของน้ำทะเลเนื่องจากลม ถ้าความเร็วลมมีค่ามากกว่า 3 m/s จะทำให้สันคลื่นแตก กระจายเป็นฝอยและเกิคฟองอากาศขึ้น โดยขนาดของฟองอากาศมีค่าตั้งแต่ 2-3 μm จนถึง 10 mm ฟองเหล่านี้จะมีผิวเป็นฟิล์มบางๆ ของน้ำทะเล ซึ่งเมื่อแตกออกก็จะเกิคเป็นหยดน้ำเล็กๆ (droplet) ้ จำนวนมาก และถูกกระแสลมพัดฟุ้งกระจายไปในอากาศ หยุดน้ำเหล่านี้จะมีการระเหยุกลายเป็นไอ และอนุภาคของเกลือฟุ้งกระจายอยู่ในอากาศ โคยมีขนาคตั้งแต่ 0.25-2.0 µm Woolf และคณะ ใด้ศึกษาในกรณีที่ความเร็วมีค่าสูงกว่า 10 m/s จะมีการพุ่งของน้ำขึ้นไปในอากาศจาก (1987) สันคลื่นและเกิดละอองน้ำที่มีขนาดใหญ่กว่าละอองของน้ำ ที่เกิดจากการแตกของฟองอากาศ ตามปกติขนาดอนุภาคของเกลือที่เกิด โดยกระบวนการนี้ อาจมีเส้นผ่านศูนย์กลางประมาณ 9 µm จากการศึกษาของ Fairall และคณะ (1983) พบว่าปริมาณเกลือที่เกิดขึ้นที่ความเร็วลม 6 m/s มีค่า 5.5x10⁻⁸ g/m².s กรณีลุมสงบจะมีการเกิดละอองน้ำ 160 อนุภาก/m².s ซึ่งเกิดโดยกระบวนการแตก 🦽 ของฟองอากาศ โดยทั่วไปองก์ประกอบทางเกมีของฝุ่นละอองที่เกิดขึ้นจากน้ำทะเลจะเหมือน องก์ประกอบของน้ำทะเล กล่าวคือส่วนใหญ่จะเป็นโซเคียมคลอไรด์ซึ่งสามารถดุดกลืนและคลาย ความชื้นได้

2.1.5.2 ฝุ่นละอองที่เกิดจากการเปลี่ยนจากก๊าซไปเป็นอนุภาค (gas-to-particle)

ฝุ่นละอองแบบละเอียด (fine particle) ที่พบอยู่เหนือน้ำทะเล ส่วนใหญ่เป็น กรดซัลเฟอริกประมาณ 40% ammonium neutralized sulphate ประมาณ 60% ตามปกติซัลเฟอ-ใดออกไซด์ซึ่งเป็นแหล่งกำเนิดของกรดซัลเฟอริก จะพบในบรรยากาศเหนือพื้นดินที่ปลดปล่อยมา จากโรงงานอุตสาหกรรม แต่อย่างไรก็ตามมีการค้นพบสารดังกล่าวเหนือพื้นน้ำในท้องทะเลที่ห่าง จากชายฝั่งมาก โดยแหล่งกำเนิดของก๊าซดังกล่าวมาจากแพลงตอนในน้ำทะเล ฝุ่นละอองที่เกิดจาก กระบวนการดังกล่าวจะมีขนาดเล็ก เพราะเกิดจากปฏิกิริยาเคมีที่มีการเปลี่ยนจากสารเดิมที่มีสภาพ เป็นก๊าซและเกิดสารใหม่ที่มีสภาพเป็นของเหลว

2.1.5.3 ฝุ่นละอองที่มีแหล่งกำเนิดจากเปลือกโลก (coarse aerosol)

ฝุ่นละอองชนิดนี้มีกระบวนการเกิดจากแรงทางกลศาสตร์เป็นหลัก โดยทั่วไปจะ เกิดจากการสึกกร่อนของดิน หิน หรือของแข็งอื่นๆ อันเนื่องมาจากแรงลม โดยลมจะทำให้อนุภาค ของแข็งหลุดออกมาจากวัตถุและฟุ้งกระจายไปตามทิศทางการไหลของกระแสลม ซึ่งอนุภาคของ ฝุ่นละอองจะมีรูปร่างไม่แน่นอน (irregular sharp) และเป็นรูปร่างแบบหยาบ (coarse particle) ซึ่งมี ขนาดตั้งแต่ 40 -100 μm

2.1.5.4 ฝุ่นละอองที่เกิดจากกิจกรรมของมนุษย์

เป็นฝุ่นละอองที่เกิดจากกระบวนการผลิตในอุตสาหกรรมและขวดขานต่างๆ ซึ่ง ส่วนใหญ่จะเกิดในกระบวนการเผาไหม้ในเครื่องขนต์ต่างๆ มีทั้งอนุภาคแบบละเอียดและแบบ หขาบ เช่น เขม่าและควันไฟ เป็นต้น บางครั้งอาจจะอยู่ในรูปของเหลวหรือของผสมระหว่าง ของเหลวและของแข็ง โดยมีการกระจายอยู่อย่างหนาแน่นในย่านอุตสาหกรรมและชุมชนเมือง

2.1.6. การเปลี่ยนแปลงของฝุ่นละอองในช่วงเวลาที่อยู่ในบรรยากาศ (aerosol evolution)

เมื่อฝุ่นละอองฟุ้งกระจายจากแหล่งกำเนิดขึ้นสู่บรรยากาศ โดยทั่วไปจะมีการเปลี่ยนแปลง ขนาด รูปร่างและจำนวนอนุภาค ซึ่งบางครั้งจะมีการเปลี่ยนแปลงทางเคมีด้วย ซึ่งสามารถจำแนกได้ ดังนี้

2.1.6.1 การเชื่อมติดกัน (coagulation)

เป็นกระบวนการที่ฝุ่นละอองซึ่งมีการเคลื่อนที่แบบบราวเนียน (Brownian motion) มาชนกันและเชื่อมติดกันเป็นอนุภากเดียว กระบวนการนี้จะทำให้อนุภาคขนาดเล็กลดจำนวนลง และอนุภาคขนาดใหญ่มีจำนวนเพิ่มขึ้น โดยทั่วไปกระบวนการเชื่อมติดกันนี้จะเกิดขึ้นจากอนุภาค ขนาดเล็กเท่านั้น

2.1.6.2 การกลั่นตัวของไอสารบนอนุภาคของแข็ง (heterogeneous condensation) ไอสารดังกล่าวอาจเป็นไอน้ำหรือไอของสารอื่นๆ กระบวนการนี้เกิดจากไอสาร ในบรรยากาศบนอนุภาคของฝุ่นละอองที่เป็นของแข็งกลั่นตัวจะทำให้อนุภาคของแข็งมีขนาดใหญ่ ขึ้น โดยจะเกิดขึ้นจนกระทั่งถึงจุดสมดุลกล่าวคือ เมื่อถึงจุดสมดุลอัตราการกลั่นตัวจะเท่ากับอัตรา การระเหย โดยทั่วไปอัตราการโตขึ้นของอนุภาคของแข็งเนื่องจากการกลั่นตัวจะถูกควบคุมด้วย อัตราการชนระหว่างอนุภาคของไอกับอนุภาคของแข็ง โดยอัตราดังกล่าวจะแปรตามพื้นที่ผิวยังผล (effective surface) ของอนุภาคของแข็งซึ่งหาได้จากสมการ

$$S_{eff}(r) = \frac{S(r)}{1 + \frac{2r}{\pi\lambda_1}}$$
(2.4)

เมื่อ $S_{e\!f\!f}(r)$ เป็นพื้นผิวยังผลS(r) เป็นพื้นที่ผิวของอนุภาค

r เป็นรัศมีของอนุภาค

 λ_1 เป็น mean free path

จากสมการที่ (2.4) ค่า S_{eff} (r) ลดลงอย่างรวดเร็วเมื่อรัศมีของอนุภาคมีขนาดใหญ่ กว่า 0.3 μm ดังนั้นกระบวนการกลั่นตัวเป็นเนื้อเดียวกันจะเกิดขึ้นอย่างเด่นชัด เมื่ออนุภาคมีขนาด เท่ากับ 0.1 – 0.5 μm Hoppel และคณะ (1990) ได้ศึกษากระบวนการดังกล่าวที่เกิดขึ้นกับฝุ่น ละอองที่มีแหล่งกำเนิดจากน้ำทะเลและพบว่าขนาดของอนุภาคจะเพิ่มขึ้นจาก 0.005 μm เป็น 0.02 μm ในช่วงระยะเวลาประมาณ 1.4 วัน โดยทั่วไปการเปลี่ยนแปลงของฝุ่นละอองโดยกระบวนการ กลั่นตัวของไอสารบนอนุภาคของแข็งเกิดขึ้นมากกว่าการเชื่อมติดกันประมาณ 10 เท่า

2.1.6.3 Oxidation ของสารต่างชนิดกัน (heterogeneous oxidation)

เกิดจากอนุภาคของฝุ่นละอองที่เป็นของเหลวเกิด oxidation กับออกซิเจนใน บรรยากาศเกิดเป็นสารใหม่ เช่น ซัลเฟอไดออกไซด์ (SO₂) ที่ละลายอยู่ในละอองน้ำเกลือจากทะเล (sea – salt aerosol water) เกิด oxidation กับออกซิเจนหรือโอโซน (O₃) หรือ hydrogen peroxide เกิดเป็นสาร HSO₃ และ SO₃ ปฏิกิริยาดังกล่าวจะเกิดขึ้นเร็วขึ้นเมื่อมีตัวเร่งปฏิกิริยา (catalyst) เป็น ไอออนของธาตุหนัก เช่น ไอออนของเหลีก (Fe) และแมงกานีส (Ma) เป็นต้น กระบวนการนี้เป็น กระบวนการที่สำคัญในการทำให้กำมะถัน (S) ที่อยู่ในละอองน้ำทะเลลดลง เนื่องจากถูก oxidation ทำให้มีมวลเพิ่มขึ้นและร่วงหล่นลงสู่พื้นได้เร็วขึ้น

2.1.6.4 การโตขึ้นของอนุภากฝุ่นละอองเนื่องมาจากความชื้นในบรรยากาศ

(growth with ambient hnmidity)

เนื่องจากฝุ่นละอองที่เป็นอนุภาคของแข็ง มักเป็นสารประเภท hygroscopic กล่าวคือ สามารถดูดและคายความชื้นได้ ดังนั้นฝุ่นละอองในบรรยากาศที่ดูดกลืนความชื้นเข้าไป จะมีมวลเพิ่มขึ้นขณะที่ฝุ่นละอองที่คายความชื้นจะมีมวลลดลง การดูดและคายความชื้นจะขึ้นกับ ชนิดของฝุ่นละออง ความชื้นสัมพัทธ์ และอุณหภูมิของบรรยากาศ

Warneck (1988) ได้ศึกษาการเปลี่ยนแปลงขนาดของฝุ่นละอองที่เป็นอนุภาค โซเดียมคลอไรด์ (Nacl) ที่ความชื้นสัมพัทธ์ค่าต่างๆ ผลที่ได้แสดงไว้ในรูป 2.1 จากกราฟจะเห็น ว่าการเพิ่มขึ้นและการลดลงของขนาดของอนุภาคจะไม่ย้อนรอยเดิม แต่มีลักษณะเป็น hysteresis cycles ซึ่งเป็นคุณสมบัติโดยทั่วไปของสาร hygroscopic

รูปที่ 2.1 การเปลี่ยนแปลงขนาดของอนุภาค Nacl ที่ความชื้นต่าง ๆ โดยเส้นทึบแสดงการ เพิ่มขึ้นของขนาดเมื่อความชื้นลดลง

2.1.6.5 กระบวนการดูดกลืนก๊าซของเมฆ (In-cloud processes) โดยทั่วไปเมฆประกอบด้วยละอองน้ำเล็กๆ (water droplets) ซึ่งสามารถดูดกลืน ก๊าซต่างๆ ได้ เมื่อดูดกลืนก๊าซบางชนิดเช่น ซัลเฟอ ไดออกไซด์ และ โอโซน สามารถเกิดปฏิกิริยากับ สารบางชนิดที่ละลายอยู่ในละอองน้ำเหล่านั้นกลายเป็นอนุภาคของแข็ง (particle matter) ได้ Langner และคณะ(1992) ได้ทำการศึกษาปริมาณซัลเฟอไดออกไซด์เพียง 14% เท่านั้นที่ถูก oxidized กลายเป็น H₂ SO₄ ส่วนอีกครึ่งหนึ่งของปริมาณซัลเฟอไดออกไซด์จะถูกนำออกไปจาก บรรยากาศโดยการร่วงหล่นสู่พื้น (dry deposition) และส่วนที่เหลือจะถูก oxidized ในละอองน้ำ เล็กๆ ที่ประกอบเป็นเมฆ

2.1.7.กระบวนการที่ฝุ่นละอองหายออกไปจากบรรยากาศ (removal mechanisms)

ฝุ่นละอองจากแหล่งกำเนิดต่างๆ มีการปลดปล่อยขึ้นสู่บรรยากาศและระหว่างที่อยู่ใน บรรยากาศจะมีการเปลี่ยนแปลงขนาดและจำนวนด้วยกระบวนการต่างๆ ดังที่กล่าวมาแล้ว ฝุ่นละอองเหล่านี้จะมีการระเหยออกไปจากบรรยากาศด้วยกระบวนการต่างๆ ดังนี้

2.1.7.1 การร่วงหล่นลงสู่พื้นโดยไม่เกี่ยวกับการกลั่นตัว (dry deposition)

กระบวนการนี้เกิดจากการที่ฝุ่นละอองถูกแรงโน้มถ่วงคึงคูดให้ตกลงสู่พื้นผิวโลก โดยไม่มีการควบแน่นเข้ามาเกี่ยวข้อง กระบวนการดังกล่าวจะขึ้นกับเงื่อนไขทางด้านอุตุนิยมวิทยา ใกล้ผิวโลก ความหยาบของพื้นผิวโลก (surface roughness) คุณสมบัติทางฟิสิกส์และเคมีของ อนุภาคฝุ่นละอองโดยทั่วไปจะวัดอัตราการร่วงหล่นในรูปฟลักซ์ของอนุภาคต่อความเข้มของ อนุภาคใกล้พื้นผิวโลก โดยอัตราการร่วงหล่นจะถูกควบคุมโดยแรงโน้มถ่วงและความปั่นป่วน (turbulent) ของบรรยากาศ การร่วงหล่นโดยอิทธิพลของแรงโน้มถ่วงของอนุภาคที่มีขนาดใหญ่กว่า 1 μm ที่ความเร็วลมเป็นศูนย์จะสามารถคำนวณความเร็วสุดท้าย (terminal velocity) ได้จากสมการ

$$V_t = \left(2.38 \, x \, 10^{-4}\right) r^2 \tag{2.5}$$

เมื่อ V, เป็นความเร็วสุดท้าย (m/s) r เป็นรัศมีของอนุภาค (μm)

Smith และคณะ (1993) ได้ศึกษาความเร็วของการร่วงหล่นของฝุ่นละอองที่มี ขนาดอนุภาคต่างๆ และที่ความเร็วลมค่าต่าง ๆ เหนือพื้นน้ำทะเลซึ่งมีความชื้นสัมพัทธ์ 98.3% พบว่าอนุภาคที่มีขนาดใหญ่กว่า 10 μm จะมีความเร็วของการร่วงหล่นด้วยอิทธิพลเหมือนกับกรณีที่ การร่วงหล่นเกิดจากเฉพาะแรงโน้มถ่วง ส่วนอนุภาคที่มีขนาด 1 - 10 μm ความเร็วของการร่วงหล่น จะขึ้นกับความเร็วลม โดยผลการศึกษาแสดงไว้ดังกราฟ รูปที่ 2.2

รูปที่ 2.2 ความเร็วของการร่วงหล่นที่ก่ารัศมีต่างๆ ของฝุ่นละออง

2.1.7.2 การร่วงหล่นลงสู่พื้นโดยเกี่ยวข้องกับการกลั่นตัว (wet deposition) กระบวนการนี้เป็นกรณีลดจำนวนฝุ่นละอองในบรรยากาศเนื่องจากการกลั่นตัว ของเมฆกลายเป็นฝนตกลงพื้นผิวโลก โดยสามารถแบ่งออกเป็น 2 กรณี ได้แก่ กระบวนการที่เกิด ภายในเมฆ (in-cloud process) และกระบวนการที่เกิดขึ้นใต้เมฆ (below-cloud process) กระบวนการที่เกิดภายในเมฆเกิดจากการกลั่นตัวของไอน้ำบนฝุ่นละออง จนมีขนาดใหญ่กลายเป็น ฝนตกลงสู่พื้นผิวโลก กระบวนการนี้เกิดขึ้นกับอนุภากที่มีขนาดใหญ่กว่า 0.1 μm โดยจะเกิด ขึ้นกับอนุภากขนาดใหญ่ก่อน หลังจากนั้นจะเกิดกับอนุภากที่มีขนาดเล็กโดยทั่วไปอัตราการกลั่น ตัวจะช้าลงเมื่อหยดน้ำมีขนาดใหญ่ขึ้น

กรณีกระบวนการที่เกิดใต้เมฆจะเกิดขึ้นเมื่อเมฆกลั่นตัวเป็นฝน จะเกิดการชนกัน ของละอองเล็กๆ (cloud droplet) ซึ่งจะจับเอาฝุ่นละอองเข้าไว้และเมื่อกลั่นตัวกลายเป็นฝน ฝุ่นละอองเหล่านี้จะถูกนำออกจากบรรยากาศลงสู่พื้นผิวโลกพร้อมกับฝน นอกจากนี้ฝุ่นละอองที่อยู่ ในแนวทางการเคลื่อนที่ของเม็ดฝนก็จะถูกจับร่วงหล่นลงสู่พื้นผิวโลกเช่นเดียวกัน กระบวนการนี้ เกิดขึ้นมากกับอนุภาคที่มีขนาดโตกว่า 2 μm แต่ฝุ่นละอองที่มีขนาดในช่วง 0.1-2 μm จะได้รับผล จากกระบวนการที่เกิดใต้เมฆเพียงเล็กน้อยเท่านั้น ดังนั้นกระบวนการดังกล่าวจึงเป็นผลที่สำคัญต่อ ฝุ่นละอองที่มีขนาดใหญ่เท่านั้น

รูปที่ 2.3 การรวมกันของเมฆกับฝุ่นละอองที่มี รูปที่2.4 การรวมกันของเมฆกับฝุ่นละอองที่มี ความหนาแน่นน้อย และอนุภาคของฝุ่นละออง ความหนาแน่นมากและอนุภาคของฝุ่น ละอองมี มีขนาคใหญ่ จะทำให้แสงส่งผ่านมายังพื้นผิว ขนาดเล็กจะทำให้แสงประมาณ90% สะท้อนกลับ โลกได้มาก สู่บรรยากาศนอกโลก จึงทำให้แสงส่งผ่านมายัง พื้นผิวโลกได้น้อย

2.1.8. การกระจายของฝุ่นละอองตามความสูงจากพื้นผิวโลก

การกระจายของฝุ่นละอองตามความสูง จะมีความสัมพันธ์กับโครงสร้างในแนวดิ่งของ บรรยากาศของโลกที่อยู่ใกล้พื้นผิวโลกที่มีการเปลี่ยนแปลงเป็นวัฏจักรตามเวลาในรอบวัน อุณหภูมิ ความชื้น และความเร็วลม ชั้นดังกล่าวจะเรียกว่า boundary layer ซึ่งสูงจากพื้นผิวโลก 2 กิโลเมตร ดังแสดงไว้ในรูปที่ 2.5 โดยอุณหภูมิจะเปลี่ยนแปลงตามความสูงตามรูปที่ 2.6

รูปที่ 2.5 boundary layer ของบรรยากาศโลก

รูปที่ 2.6 การเปลี่ยนแปลงของอุณหภูมิของบรรยากาศตามความสูงจากพื้นผิวโลก

จากการเปลี่ยนแปลงตามความสูงของอุณหภูมิของบรรยากาศ (boundary layer) จะเห็นว่า มีค่าคงที่ หลังจากนั้นจะมีการเพิ่มขึ้น ลักษณะการเปลี่ยนแปลงนี้มีผลทำให้สามารถแบ่งชั้นของ ฝุ่นละอองได้เป็น ฝุ่นละอองในชั้น boundary layer จะอยู่ที่ระดับความสูง 0-2 กิโลเมตร และ ฝุ่นละอองอิสระในชั้นโทรโพสเฟียร์ (Troposphere) อยู่ที่ระดับความสูง 2-11 กิโลเมตร จากนั้นจะ เป็นฝุ่นละอองที่อยู่ในชั้นสตราโทรเฟียร์ (Stratosphere) ที่ระดับความสูงมากกว่า 11 กิโลเมตร ปริมาณของฝุ่นละอองที่พบในระดับความสูงต่างๆ สามารถแสดงได้ดังรูปที่ 2.7

รูปที่ 2.7 ปริมาณและชนิดของฝุ่นละอองที่พบที่ระดับความสูงต่างๆ ของบรรยากาศ (N เป็นจำนวนของอนุภาคต่อลูกบาศก์เซนติเมตร)

(attenuation) โดยกระบวนการดูดกลื่น (absorbtion) และการกระเจิง (scattering)โดยองค์ประกอบ ต่างๆ ของบรรยากาศ ดังรูปที่ 2.8

รูปที่ 2.8 แสดงการลดลงของรังสีดวงอาทิตย์เมื่อเคลื่อนที่ผ่านบรรยากาศของโลก

โดยทั่วไปกรณีท้องฟ้าปราสจากเมฆเราสามารถคำนวณความเข้มรังสีควงอาทิตย์ที่มาถึงพื้น โถกได้โดยอาศัยกฎของ Bouguer (Iqbal 1983:109) ได้ดังนี้

$$I_{n\lambda} = I_{on\lambda} \exp(-\tau'_{\lambda}m_{a})$$
(2.6)

- เมื่อ I_{nλ} เป็นความเข้มรังสีควงอาทิตย์ที่ความยาวคลื่น λ ต่างๆ ซึ่งผ่านบรรยากาศมา กระทบพื้นผิวโลกในแนวตั้งฉาก
 - $I_{on\lambda}$ เป็นความเข้มรังสีควงอาทิตย์ที่กวามยาวกลื่น λ ต่างๆที่เหนือบรรยากาศโลก
 - au_{λ}' เป็นค่าความลึกเชิงแสงของบรรยากาศที่ความยาวคลื่น λ ต่างๆ
 - *m*_a เป็นมวลโมเลกุลของอากาศ

จากสมการที่ (2.6) ค่าความลึกเชิงแสงของบรรยากาศเป็นผลมาจากกระบวนการคูดกลืน และกระบวนการกระเจิงแสงของแต่ละองค์ประกอบต่างๆ ในบรรยากาศ ในกรณีของค่าความลึก เชิงแสงของการดูดกลืนและการกระเจิงของโมเลกุลอากาศ ไอน้ำ แก๊ส และโอโซน สามารถหาได้ เนื่องจากองค์ประกอบเหล่านี้ มีคุณสมบัติในการดูดกลืนและการกระเจิงรังสีดวงอาทิตย์ที่แน่นอน แต่กรณีของฝุ่นละอองการหาค่าความลึกเชิงแสงทำได้ยากเพราะฝุ่นละอองมีหลายชนิด และแต่ละ ชนิดมีขนาดและองค์ประกอบที่แตกต่างกัน

ในช่วงต้นศตวรรษที่ 20 Angstrom (1929) ได้เสนอสูตรการหาก่ากวามถึกเชิงแสงของ ฝุ่นละออง (aerosol optical depth) โดยอาศัยสมการที่เสนอโดย Lundholm ซึ่งเขียนได้ดังนี้

$$\tau'_{a\lambda} = \beta \lambda^{-\alpha} \tag{2.7}$$

 β ซึ่งโดยทั่วไปจะเรียกว่าสัมประสิทธิ์ความขุ่นมัวของอังสตรอม จะเป็นคัชนีบ่งชี้ปริมาณ ของฝุ่นละอองในบรรยากาศในแนวคิ่ง ส่วน α จะมีความสัมพันธ์กับขนาดของฝุ่นละอองที่ กระจายอยู่โดยทั่วไป β จะแปรค่าอยู่ในช่วง 0-0.5 และ α จะแปรค่าจาก 0-4 เมื่อฝุ่นละอองมี ขนาดเล็กมาก α จะมีค่าเข้าใกล้ 4 และเมื่อฝุ่นละอองขนาคใหญ่ α จะมีค่าเข้าใกล้ 0 สำหรับสภาพ ฝุ่นละอองโดยทั่วไปที่เกิดขึ้นตามธรรมชาติ α จะมีค่าเท่ากับ 1.3 ± 0.5 สำหรับค่า β ในสภาพที่ มีความขุ่นมัวในระดับต่างๆ จะแสดงไว้ดังตารางที่ 2.2

Atmosphere Angstrom turbidity coefficient, β		
Clean	0.00	
Clear	0.10	
Turbid	0.2	
Very turbid	0.4	

ตารางที่ 2.2 แสดงค่าสัมประสิทธิ์ความขุ่นม้วของ Angstrom ในสภาพบรรยากาศต่างๆ

ค่า β และ α ก็เช่นเดียวกันกับตัวแปรทางอุตุนิยมวิทยาอื่นๆ กล่าวคือ จะแปรค่าตลอด ทั้งวันซึ่งมีสาเหตุมาจากการเปลี่ยนแปลงของอุณหภูมิ การระเหยของน้ำ และการกลั่นตัวของไอน้ำ ในบรรยากาศ การเปลี่ยนแปลงนี้เองอาจทำให้ค่า β และ α เพิ่มขึ้นหรือลดลงแล้วแต่สภาพ อากาศ ในกรณีที่ไม่สามารถหาค่า β จากการวัดได้จำเป็นต้องหาวิธีการคำนวณจากค่าทัศนวิสัย Meclatchey and Selby (1927) ได้เสนอแบบจำลองสำหรับคำนวณค่าจากทัศนวิสัยดังสมการที่ (2.8)

เมื่อ β เป็น Ångstrom's turbidity coefficient

- α เป็น Wavelength exponent
- vis เป็น ค่าทัศนวิสัย (km)

ความสัมพันธ์ระหว่าง β , α และทัศนวิสัย สามารถแสดงได้ดังกราฟในรูปที่ 2.9 (Iqbal 1983:121)

$$\tau_{a\lambda} = \exp\left(-\beta\lambda^{-\alpha}m_a\right) \tag{2.9}$$

เมื่อ $au_{a\lambda}$ เป็นสัมประสิทธิ์การส่งผ่านรังสีควงอาทิตย์ของฝุ่นละอองที่ความยาวคลื่น λ ต่าง ๆ

รูปที่ 2.10 แสดงการแปรค่าของ $au_{a\lambda}$ กับ $eta m_a$ ที่ lpha = 1.3 และ 0.7

$$\tau_{a\lambda} = (0.12445\alpha - 0.0162) + (1.003 - 0.125\alpha)exp[\beta m_a(1.089\alpha + 0.5123)]$$
(2.9)

เพื่อความสะดวกในการศึกษาผลการดูดกลืนและการกระเจิงรังสีดวงอาทิตย์ของฝุ่นละออง ในอากาศสามารถเขียนสมการในรูปสัมประสิทธิ์การส่งผ่านรังสีดวงอาทิตย์ของฝุ่นละออง ซึ่งมี ความสัมพันธ์กับก่าทัศนวิสัยและทัศนวิสัยสัมพันธ์กับ β และ α ตามสมการที่ (2.8) ดังนั้นจะ ได้ว่า

$$\tau_{a\lambda} = \left[0.97 - 1.265 (vis)^{-0.66} \right]^{m_a^{(0.9)}}$$
(2.10)

Angstrom (1961) ได้เสนอวิธีการกำนวณก่าและเสนอให้ β เป็นดัชนีชี้ระดับกวามขุ่นมัว ของบรรยากาศ (atmospheric turbidity) และได้เสนอวิธีการหาก่า β โดยการวัดกวามเข้มรังสี ตรงที่ความยาวคลื่น 2 ค่า คือ λ_1 และ λ_2 เมื่อ λ_1 และ λ_2 เป็นความยาวคลื่นที่ไม่มีการดูดกลืนโดย ไอน้ำและก๊าซอื่นๆ (Angstrom ,1964) โดยทั่วไปจะเลือกใช้ $\lambda_1 = 0.380 \mu m$ และ $\lambda_2 = 0.5 \mu m$ จากนั้นใช้สมการ (6) กับค่าที่วัดได้ 2 ความยาวคลื่น เพื่อคำนวณหา β และ α ในการวัดความเข้ม รังสีดวงอาทิตย์ที่มีความยาวคลื่น λ_1 และ λ_2 Angstrom (1964) ได้เสนอให้ทำการวัดโดยใช้ เครื่องไฟเฮริโอมิเตอร์ซึ่งมีแผ่นกรองแสงช่วย

เนื่องจากการหาค่า β โดยใช้วิธีของอังสตรอม โดยใช้ไฟเฮริโอมิเตอร์ ซึ่งติดแผ่นกรอง แสงมีความยุ่งยากในการใช้งานเพราะด้องมีการเปลี่ยน แผ่นกรองแสงระหว่างการวัดของอุปกรณ์ สำหรับวัดรังสีของดวงอาทิตย์ที่ 2 ความยาวกลื่นได้พร้อมกันซึ่งสะดวกในการนำไปคำนวณค่า β เกรื่องมือดังกล่าวเรียกว่า Sun photometer

รูปที่2.11 เครื่อง Sun photometer

นอกจากนี้ยังได้มีการพัฒนาเครื่องวัดสเปกตรัมรังสีดวงอาทิตย์ที่ความยาวคลื่นต่างๆ หลาย ความยาวคลื่น โดยสามารถวัดได้ทั้งรังสีตรง รังสีกระจาย และรังสีรวม ซึ่งสามารถเลือกความเข้ม รังสีตรง 2 ความยาวคลื่น มาใช้ในการคำนวณค่า β ได้ อุปกรณ์ดังกล่าวเรียกว่า Multi- filter rotating shadow band radiometer (MFR-7)

รูปที่ 2.12 เครื่อง Multi-filter rotating shadow band radiometer (MFR-7)

นอกจากนี้ยังมีเครื่องวัดสเปกตรัมรังสีดวงอาทิตย์ชนิดอื่นๆ เช่น Spectroradiometer ซึ่ง สามารถใช้ในการวัดความเข้มรังสีดวงอาทิตย์สำหรับคำนวณค่า β ได้ก็ตาม แต่อุปกรณ์ดังกล่าวมัก มีราคาแพงและบางชนิดไม่สามารถติดตั้งกลางแจ้งเพื่อทำการวัดระยะยาวได้ ดังนั้น Louche และคณะ (1987) จึงได้พัฒนาวิธีการหาก่า β งากข้อมูลความเข้มรังสึ ตรงที่ได้จากเครื่องวัดไฟเฮริโอมิเตอร์ในช่วงความยาวกลื่นกว้าง (λ อยู่ในช่วง 0.29 – 2.5 μm) ซึ่ง จะลดความยุ่งยากในการเปลี่ยนแผ่นกรองแสง

นอกจากการใช้ Angstrom's turbidity coefficient (β) เป็นดัชนีความขุ่นมัวของ บรรยากาศเนื่องจากฝุ่นละอองแล้ว ยังมีการใช้สัมประสิทธิ์อื่นๆ อีก เช่น Link turbidity factor, Unsworth-Monteith coefficient (Tu) และ *Schiiepp* turbidity coefficient(B)

Link turbidity factor จะเป็นตัวเลขที่ใช้คูณ total optical depth ของบรรยากาศที่ ปราศจากฝุ่นละออง เพื่อแสดงผลของฝุ่นละอองในบรรยากาศที่เป็นจริง โดยทั่วไปบรรยากาศที่ ปราศจากฝุ่นละอองเราสามารถกำนวณค่ารังสีตรงได้จากสมการ

$$G_n = \left(\frac{G_{sc}}{\rho^2}\right) \exp\left(-\tau'_{CDA}m_a\right)$$
(2.11)

เมื่อ G, เป็นความเข้มรังสีตรงที่ตกตั้งฉากกับระนาบที่ตั้งฉากกับทิศทางของรังสี

- G_{sc} เป็น solar constant
- ho เป็นแฟลเตอร์สำหรับแก้ผลของการเปลี่ยนแปลงของโลกกับควงอาทิตย์

 au'_{CDA} เป็นความลึกเชิงแสงของบรรยากาศกรณีที่ปราศจากฝุ่นละออง m_a เป็น air mass

ในกรณีที่บรรยากาศมีฝุ่นละออง Link ได้เสนอให้คำนวณค่าความเข้มรังสีควงอาทิตย์โดย การคูณ optical depth ของบรรยากาศด้วย T_L และเรียก T_L ว่า Link turbidity factor โดยความ เข้มรังสีตรงของบรรยากาศที่มีฝุ่นละอองจะเขียนได้ดังสมการ

$$G_n = \left(\frac{G_{sc}}{\rho^2}\right) \exp\left(-\tau'_{CDA}T_L m_a\right)$$
(2.12)

ค่า*T_L* จะหาได้จากการวัดความเข้มรังสีตรงในช่วงกวามยาวกลื่นกว้างแล้วนำมาเข้าสูตร กำนวณตามสมการ (2.12)

<u>ข้อค</u>ี ของการใช้ Link turbidity factor ไม่จำเป็นต้องใช้ข้อมูลสเปกตรัมซึ่งวัดได้ยาก <u>ข้อเสีย</u> กล่าวคือค่า T_L จะขึ้นกับมวลอากาศ (air mass) ซึ่งเป็นการยากที่จะเปรียบเทียบ สภาพ ความงุ่นมัวโดยใช้ T_L Unsworth-Monteith coefficient (Tu) เป็นการแสดงผลของฝุ่นละอองในรูปของ อัตราส่วนของบรรยากาศที่มีฝุ่นละอองกับบรรยากาศที่ปราศจากฝุ่นละออง โดยนิยามตามสมการ

$$\frac{G_n}{G_n^*} = \exp\left(-T_{u\lambda}m_a\right) \tag{2.13}$$

$$G_n^* = G_{on} \tau_R \tau_g \tau_w \tau_{oz} \tag{2.14}$$

เมื่อ G_n เป็นค่าความเข้มรังสีควงอาทิตย์

คือ

G_n^{*} เป็นค่าเฉลี่ยของความเข้มรังสีควงอาทิตย์ในบรรยากาศที่ปราศจากฝุ่นละออง exp(–T_{ux}m_a) เป็นค่าสัมประสิทธิ์การส่งผ่านสเปกตรัมของฝุ่นละออง เราสามารถจัดรูป Unsworth-Monteith coefficient (Tu) ในสมการ(2.13) ใหม่จะได้สมการ

$$T_{u\lambda} = -\frac{1}{m_a} \ln \left(\frac{G_n}{\left(G_{sc} / \rho^2\right) \tau_R \tau_g \tau_w \tau_{oz}} \right)$$
(2.15)

กรณีของ *Schiiepp* turbidity coefficient(B) ซึ่งได้เสนอโดย *Schiiepp* หาได้โดยทำการ แทนค่า β ด้วยค่า B จะคล้ายกับค่า β เพียงแต่ค่า B ใช้ log ฐานสิบแทนการใช้ e และใช้ ความยาวคลื่น 0.5 μm แทนการใช้ 1 μm ความสัมพันธ์ระหว่าง β และ B หาได้ดังสมการ

$$e^{-\frac{\beta}{\lambda a}} = 10^{-\frac{B}{(2\lambda)^a}} \tag{2.16}$$

$$B = \beta 2^{\alpha} \log e \tag{2.17}$$

กรณี $\alpha = 1.3$ จะได้

$$B = \beta 1.07 \tag{2.18}$$

2.2 งานวิจัยที่เกี่ยวข้องกับการศึกษาค่าความลึกเชิงแสงของฝุ่นละอองในบรรยากาศ

เมื่อรังสีควงอาทิตย์เคลื่อนที่ผ่านชั้นบรรยากาศของโลก_ในสภาพท้องฟ้าปราศจากเมฆจะมี ความเข้มลดลง (attenuation) เนื่องจากกระบวนการต่างๆ ได้แก่ การกระเจิงโดยโมเลกุลของอากาศ หรือ Rayleigh scattering การกระเจิงและการดูดกลื่นของฝุ่นละอองในบรรยากาศ และการดูดกลื่น ในบางช่วงของความยาวคลื่นอันเนื่องมาจากก๊าซต่างๆ ในบรรยากาศ (selective absorption) ้โดยทั่วไปมักไม่มีปัญหาในการกำนวณความเข้มรังสีดวงอาทิตย์ที่ถูกกระเจิงโดยโมเลกุลของอากาศ และการดูดกลืนบางช่วงของความยาวคลื่นจากโมเลกุลอากาศ แต่ปัญหาสำคัญอยู่ที่การดูดกลืนและ การกระเจิงรังสีควงอาทิตย์ของฝุ่นละอองในบรรยากาศ ทั้งนี้เพราะฝุ่นละอองมีหลายชนิดแต่ละ ้ชนิดมีคุณสมบัติไม่เหมือนกัน นอกจากนี้ยังมีการกระจายในแนวคิ่ง และการกระจายตามพื้นที่และ เวลาในรอบปีที่ยากต่อการศึกษา ถึงแม้ว่าเราจะสามารถใช้ทฤษฎีของ Mie หาการกระเจิงและการ ดูดกลื่นรังสีดวงอาทิตย์ของฝุ่นละอองได้ก็ตาม แต่ทฤษฎีดังกล่าวมีความสลับซับซ้อนและยากต่อ การนำมาใช้ในทางปฏิบัติ ในช่วงต้นทศวรรษที่ 20 Angstrom (1929) เป็นคนแรกที่เสนอวิธีการ ้ คำนวณการลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่นละออง โดยพิจารณาผลรวมของการลดลงทั้งจาก การดุดกลื่นและการกระเจิงรังสีดวงอาทิตย์ของฝุ่นละออง และบอกเป็นค่าความขุ่นมัวของ บรรยากาศเนื่องจากฝุ่นละออง โดยใช้ค่า Turbidity coefficient (eta) ซึ่งมีความสัมพันธ์กับปริมาณ ้ฝุ่นละอองในบรรยากาศ ต่อมา Moon (1940) ได้ตั้งสมมติฐานว่าการลดลงของรังสีดวงอาทิตย์ เนื่องจากฝุ่นละอองเกิดจากการกระเจิงเพียงอย่างเดียว และได้เสนอสูตรสำหรับการกำนวณค่า scattering coefficient ของฝุ่นละออง

ในช่วงทศวรรษที่ 1930 เป็นต้นมา นักวิจัขของประเทศสหภาพรัสเซียได้ทำการศึกษาความ เข้มรังสีควงอาทิตย์ ทั้งยังพัฒนาอุปกรณ์วัดและทฤษฎี ซึ่งสามารถนำมาใช้ในการคำนวณผลของ ฝุ่นละอองที่มีต่อรังสีควงอาทิตย์ งานวิจัยที่สำคัญงานหนึ่งได้แก่การพัฒนาทฤษฎีการกระเจิงคลื่น แม่เหล็กไฟฟ้าโดยฝุ่นละออง โดยนักวิทยาศาสตร์ชื่อ Mie เป็นคนตั้งขึ้นเรียกทฤษฎีนี้ว่า Mie's theory (Bohren and Huffmar 1983) โดยทฤษฎีดังกล่าวอยู่บนพื้นฐานของทฤษฎีกลื่นแม่เหล็กไฟฟ้า ของ Maxwell ซึ่งยังคงใช้กันอย่างแพร่หลายในปัจจุบัน งานวิจัยที่สำคัญอีกชิ้นหนึ่งของนักวิจัย ชาวรัสเซีย คือการศึกษาการลดลงของรังสีควงอาทิตย์เนื่องจากฝุ่นละอองโดยอาศัยการวัดรังสีตรงที่ พื้นผิวโลก ซึ่งดำเนินการโดย Genikhovich and Rusian (Berlyand 1974) ในงานดังกล่าวผู้วิจัยได้ใช้ ข้อมูลความเข้มรังสีตรงซึ่งวัดได้ที่เมืองRepetek ในเดือนตุลาคม ค.ศ. 1970 มาทำการวิเคราะห์ ใน การวัดดังกล่าวได้ใช้แผ่นกรองแสงมาช่วยตัดแสงในบางความยาวคลื่นออกไป จากนั้นจึงทำการ กำนวณหาค่า Aerosol Optical Depth ในช่วงความยาวคลื่น 0.38- 0.53 µm และ 0.53- 0.69 µm จาก ผลการวิเคราะห์พบว่าก่า Aerosol Optical Depth ที่ได้มีการเปลี่ยนแปลงตามเวลาในรอบวัน และค่า Aerosol Optical Depth ในช่วงความยาวคลื่น 0.38- 0.53 µm มีก่าสูงกว่าในช่วง 0.53- 0.69 µm

Watt (1978) ได้ทำการศึกษาองค์ประกอบของบรรยากาศในวันที่ท้องฟ้าปราศจากเมฆที่มี ผลต่อการถคลงของรังสีควงอาทิตย์ สรุปได้ว่าตัวแปรที่มีผลต่อการถคลงของรังสีควงอาทิตย์ลือ โอโซน 0.5-3.0% โมเลกุลอากาศแห้ง 11-13% ไอน้ำ 3.5-14% และฝุ่นละอองในอากาศ 0.1-26%

ในช่วงทศวรรษ1970 เป็นต้นมา ได้มีการนำเทคนิคการใช้ข้อมูลคาวเทียมมาช่วยใน การศึกษาค่าความเข้มรังสีดวงอาทิตย์ที่พื้นผิวโลก เช่น ในประเทศออสเตรเลีย Dr. Nunez แห่ง มหาวิทยาลัย Tasmania ได้พัฒนาการใช้ข้อมูลดาวเทียมในการคำนวณค่าความเข้มรังสีดวงอาทิตย์ ซึ่งมีผลงานตั้งแต่ช่วงปลายทศวรรษ 1970 ต่อเนื่องมาจนถึงปัจจุบัน ในงานวิจัย Nunez(1993) ได้ ใช้ข้อมูลดาวเทียมอุตุนิยมวิทยา GMS ทำการศึกษาค่าความเข้มรังสีดวงอาทิตย์ที่ตกกระทบ พื้นผิวโลกในบริเวณเขตร้อนของมหาสมุทรแปซิฟิก ซึ่งครอบคลุมพื้นที่บางส่วนของประเทศไทย ฟิลิปปินส์ อินโดนีเซีย และภาคเหนือของประเทศออสเตรเลีย ตามโครงการ Tropical Ocean Global Atmosphere (TOGA) ในโครงการดังกล่าว Dr.Nunez ได้พัฒนาแบบจำลองเชิงฟิสิกส์ซึ่งใช้กำนวณ ค่าความเข้มรังสีดวงอาทิตย์ในเขตร้อนได้ดี จากการวิจัยนี้ (Nunez 1993) ได้พบว่าฝุ่นละอองใน อากาศมีผลในการดูดกลืนและกระเจิงรังสีดวงอาทิตย์ ผลการศึกษาพบว่าบริเวณกรุงเทพมหานคร ฝุ่นละอองมีผลทำให้รังสีดวงอาทิตย์ลดลง 19 %

K.Al-Jamal (1992) ได้ทำการศึกษาในปี 1990-1991 พบว่าในเดือนตุลาคม ซึ่งอยู่ในช่วง ฤดูร้อนมีค่าความลึกเชิงแสงของฝุ่นละอองมากที่สุดคือ 0.22 แต่มีความถี่เพียง 21% จากข้อมูล ทั้งหมด และจากข้อมูลส่วนใหญ่พบว่า ค่าความลึกเชิงแสงของฝุ่นละออกจะน้อยกว่า 0.12 นอก จากนี้ยังได้ทำการเลือกพิจารณาวันที่มีค่า อุณหภูมิ ความชื้นสัมพัทธ์ ความเข้มรังสีนอกบรรยากาศ โลก และที่พื้นผิวโลก ความลึกเชิงแสงของโอโซน โมเลกุลอากาศ และไอน้ำที่มีค่าพอๆกันเพื่อหา ค่าการลดลงของรังสีควงอาทิตย์ซึ่งตรงกับวันที่ 9 มิถุนายน 1990 (ท้องฟ้าปราศจากเมฆ) และวันที่ 14 กันยายน 1991 (ท้องฟ้าขุ่นมัว) พบว่าความเข้มรังสีควงอาทิตย์ในวันที่ท้องฟ้าขุ่นมัวมีค่าลดลง เป็น 4 เท่าของวันที่ท้องฟ้าปราศจากเมฆ โดยจะแสดงก่าข้อมูลที่ใช้พิจารณาในตารางที่ 2.3

Date	Hour	Туре	Temp(C°)	RH(%)	$I_0(W/m^2)$	I(W/m ²)
9 Jun 1990	11.30	Clear	31	22	1311	976
14 Sep 1991	12.00	Dusty	31.3	29.5	1340	797
	T _{oz}	T _R	A_w	$ au_a$		
9 Jun 1990	0.977	0.904	0.102	0.05		
14 Sep 1991	0.976	0.893	0.115	0.21		

ตารางที่ 2.3 แสดงข้อมูลที่ใช้พิจารณาการลดลงของรังสีดวงอาทิตย์ใน วันที่ท้องฟ้าปราศจากเมฆและวันที่ท้องฟ้าขุ่นมัว

Estelles และคณะ(2002) ได้ทำการเปรียบเทียบค่าความลึกเชิงแสงของฝุ่นละอองที่ความ ยาวคลื่น 500 nm ของ 2 ฤดูกาลคือ ฤดูร้อน และฤดูหนาว พบว่าในฤดูหนาวมีค่าความลึกเชิงแสงต่ำ ที่สุดในเดือนมกราคม คือ 0.1 และมีก่าสูงในฤดูร้อนเท่ากับ 0.4-0.5 ในเดือนมิถุนายน ขณะเดียวกัน ได้ทำการหาค่า wavelength exponent (α) โดยในเดือนมกราคมมีก่าเท่ากับ 1.2 และในเดือน มิถุนายนมีก่า 0.8

นอกจากนี้ยังมีนักวิจัยชาวอิตาลี Francesco และคณะ (2004) ได้ทำการศึกษาค่าความลึก เชิงแสงของฝุ่นละอองในเดือนมิถุนายนถึงเดือนตุลาคม ค.ศ. 2003 ที่ความยาวคลื่น 480 และ 780 nm พบว่า ค่าความลึกเชิงแสงมีการเปลี่ยนแปลงตลอดเวลาในรอบวันและที่ความยาวคลื่น 480 nm จะมีค่าความลึกเชิงแสงของฝุ่นละอองมากกว่าที่ความยาวคลื่น 780 nm ซึ่งค่าสูงสุดอยู่ที่ความยาว คลื่น 480 nm ในเดือน สิงหาคมมีค่าเท่ากับ 0.56 และค่าต่ำสุดอยู่ในเดือนกรกฎาคม พร้อมกันนี้ยัง ได้หาค่า β และ α อีกด้วย โดยค่าสูงสุดของ α เท่ากับ 0.94 ± 0.14 ในเดือนตุลาคม และค่าต่ำสุด ในเดือนมิถุนายนมีค่าเท่ากับ 1.73 ± 0.25 ส่วนค่า β พบว่ามีค่าสูงสุดเท่ากับ 0.15 ± 0.02 ใน เดือนสิงหาคม และ 0.14 ± 0.02 ในเดือนตุลาคม และมีค่าต่ำสุดในเดือนมิถุนายนมีค่าเท่ากับ 0.08 ± 0.02

สำหรับในประเทศไทย Exell (1978) สถาบันเทคโนโลยีแห่งเอเชียได้ทำการหาค่าสภาพ ขุ่นมัวของบรรยากาศ (atmospheric turbidity) โดยอาศัยตารางกำนวณก่ากวามเข้มรังสีดวงอาทิตย์ ในสภาพท้องฟ้าปราศจากเมฆของ *Schiiepp* (Robinson 1966) จากตารางดังกล่าวสามารถหาค่า ความเข้มรังสีดวงอาทิตย์ในสภาพท้องฟ้าปราศจากเมฆ ถ้าทราบปริมาณไอน้ำในอากาศ และการ ลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่นละออง Exell ได้ใช้ข้อมูลความเข้มรังสีดวงอาทิตย์ของ สถานีกรุงเทพมหานคร และเซียงใหม่ ในวันที่ท้องฟ้าปราศจากเมฆมาคำนวณหาสัมประสิทธิ์ความ ขุ่นมัวของอากาศ (turbidity coefficient) โดยใช้ตารางของ *Schiiepp* จากนั้นนำค่า turbidity coefficient ที่ได้มาหาความสัมพันธ์กับข้อมูลทัศนวิสัย ซึ่งจะได้ความสัมพันธ์ดังกราฟรูปที่ 2.13

รูปที่ 2.13 แสดงความสัมพันธ์ของค่า turbidity coefficient (B) กับข้อมูลทัศนวิสัย ที่กรุงเทพมหานกรและเชียงใหม่ (Exell ,1978)

25 ปีต่อมา Janjai และคณะ (2003) นักวิจัยของห้องปฏิบัติการฟิสิกส์บรรยากาศ มหาวิทยาลัยศิลปากร ได้ทำการศึกษาสภาพความขุ่นมัวของบรรยากาศในประเทศไทยของสถานี ต่าง ๆ ทั้งหมด 53 สถานี ซึ่งตั้งกระจายกันอยู่ทั่วประเทศไทย โดยใช้วิธีต่าง ๆ 3 วิธีในการหาค่า Angstrom's turbidity coefficient (β) คือ วิธีของ Langley วิธีการของ Louche และแบบจำลองที่ พัฒนาขึ้นใหม่ซึ่งเป็นความสัมพันธ์ระหว่าง β และทัศนวิสัย ในช่วง ค.ศ. 1998-2000 จาก ผลการวิจัยพบว่าในภากเหนือ ภากตะวันออกเฉียงเหนือ และภาคกลาง ค่า β มีค่าสูงในช่วงฤดูแล้ง (พฤษภาคม – ตุลาคม) และมีค่าต่ำในช่วงฤดูฝน (พฤศจิกายน-เมษายน) สำหรับภาคใต้ค่า β ก่อนข้างต่ำและมีค่าเกือบคงที่ตลอดทั้งปี

ในปีถัดมา Pipat และ Surapong (2004) นักวิจัยด้านพลังงานของสถาบันเทกโนโลยีแห่ง เอเชีย ได้ทำการศึกษาสภาพความขุ่นมัวของบรรยากาศของท้องฟ้าประเทศไทย โดยทำการ เปรียบเทียบจาก 3 วิธี คือ Linke factor (T_L) , Angstrom coefficient (β) และ Illuminance turbidity factor (T_{il}) โดยใช้ข้อมูลตั้งแต่มกราคม 2000 ถึง มิถุนายน 2002 จากผลการวิจัยพบว่าทั้ง 3 วิธี ให้ผลที่สอดคล้องกันคือ ค่า β จะมีค่าต่ำในฤดูแล้งเดือนกันยายน ถึงเดือนกุมภาพันธ์ ซึ่งค่าเฉลี่ย รายปีจะเท่ากับ 0.098 และในช่วงฤดูแล้งขนาดของฝุ่นละอองจะมีขนาดเล็ก และฝุ่นละอองจะมี ขนาดใหญ่ในเดือนมีนาคมถึงสิงหาคม และเมื่อทำการหาการกระจายความถี่ของขนาดของฝุ่น ละอองพบว่าขนาดของฝุ่นละอองที่พบมีค่าอยู่ในช่วง 1.3 ± 0.5 ซึ่งตรงกับที่ Angstrom (1929)ได้ เสนอไว้

เนื่องจากในอดีตที่ผ่านมา การศึกษาเรื่องฝุ่นละอองในประเทศไทยยังมีไม่มากนักดังนั้น ผู้วิจัยจึงเสนอที่จะทำการศึกษาค่าความลึกเชิงแสงของฝุ่นละออง ที่บริเวณกรุงเทพมหานครและ ปริมณฑล โดยวิธีการศึกษาจะกล่าวในรายละเอียดในบทถัดไป

บหาวิทยาลัยสีสปากร สบวนลิบสิทธิ์

บทที่ 3 วิธีการดำเนินการและผล

ในงานวิจัยนี้ผู้วิจัยต้องการศึกษาก่าความถึกเชิงแสงของฝุ่นละออง (aerosol optical depth) ซึ่งเป็นพารามิเตอร์ที่บอกถึงสภาพการส่งผ่านของแสงเนื่องจากฝุ่นละออง ทั้งนี้เพราะก่าความถึก เชิงแสงเป็นส่วนหนึ่งที่ใช้ในการกำนวณก่าความเข้มรังสีควงอาทิตย์เพื่อใช้ในงานค้านพลังงาน แสงอาทิตย์ โดยในการดำเนินการวิจัยจะประกอบไปด้วยการหาก่าความถึกเชิงแสงเนื่องจากฝุ่น ละออง การจำแนกชนิดของฝุ่นละออง พร้อมทั้งทำการหาการลดลงของรังสีควงอาทิตย์เนื่องจาก ฝุ่นละอองในบรรยากาศโดยใช้ข้อมูลจากการวัดที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร (13.73 °N, 100.57 °E) สถาบันเทคโนโลยีแห่งเอเชียจังหวัดปทุมธานี (14.08 °N, 100.62 °E) และคณะวิทยาศาสตร์มหาวิทยาลัยศิลปากร จังหวัดนกรปฐม (13.82 °N, 100.04 °E) ตาม รายละเอียดด้านต่างๆ ดังนี้

UMIONGNAGRAUMAS AVOUAUAMA

3.1 การหาค่าความลึกเชิงแสงของฝุ่นละออง

3.1.1 เครื่องมือ

เครื่องมือที่ใช้ในการหาค่าความลึกเชิงแสงของฝุ่นละออง คือ sunphotometer ซึ่งทำการวัด ความเข้มรังสีดวงอาทิตย์ที่ความยาวคลื่นซึ่งมีเฉพาะการดูดกลืนและการกระเจิงของรังสีดวงอาทิตย์ จากฝุ่นละอองและ โมเลกุลอากาศเท่านั้น หรือมีการดูดกลืนเพียงเล็กน้อยจากก๊าซอื่นๆ โดย เครื่องมือแต่ละสถานีมีรายละเอียดดังนี้

3.1.1.1 การวัดที่กรมอุตุนิยมวิทยา บางนา (สถานึกรุงเทพฯ)

เครื่องมือดังกล่าวเป็นแบบเคลื่อนย้ายได้ (portable sunphotometer) ที่ผลิตโดย บริษัท CIMEL โดยทำการวัดบนดาดฟ้าของกรมอุตุวิทยา บางนา กรุงเทพมหานคร ซึ่งมีละติจูด เท่ากับ 13.73 °N และลองติจูดเท่ากับ 100.57 °E โดยเครื่องนี้มีลักษณะเป็นกล่องกว้างประมาณ 20 เซนติเมตร ยาวประมาณ 30 เซนติเมตร และสูงประมาณ 10 เซนติเมตร และจะมีท่อเหล็ก ทรงกระบอกกลวงยาวประมาณ 10 เซนติเมตร ต่ออยู่ที่ส่วนบนของเครื่องวัดและหันปากกระบอก ไปตามควงอาทิตย์ เพื่อให้รังสีดวงอาทิตย์ส่องเข้าไปในกระบอก ดังรูปที่ 3.1 ค่าที่วัดได้เป็นค่า ความเข้มรังสีดวงอาทิตย์ที่มีความยาวคลื่นต่างๆ เป็น digital count โดยเครื่องดังกล่าวจะทำการวัด

9	
ช่องสัญญาณ	ความยาวคลื่น(นาโนเมตร)
1	380
2	440
3	500
4	670
5	870
6	937

ตารางที่ 3.1 แสดงความยาวคลื่นของเครื่อง sunphotometer ที่กรมอุตุนิยมวิทยาบางนา กรงเทพมหานคร

ในการบันทึกข้อมูลจะทำการบันทึกที่ 3 ครั้งต่อวัน คือที่เวลา 9.00 น. 12.00 น. และ 15.00 น. ในการทำการวัคแต่ละครั้งจะมีผู้ชำนาญการเป็นผู้วัคและบันทึกข้อมูล ผู้วิจัยจะนำข้อมูล ที่ได้มาทำการวิเคราะห์

รูปที่ 3.1 เกรื่อง sunphotometer ที่กรมอุตุวิทยา บางนา กรุงเทพมหานคร

3.1.1.2 การวัดที่สถาบันเทคโนโลยีแห่งเอเชีย (สถานี AIT)
 เครื่องมือที่ใช้เป็น sunphotometer แบบติดตั้งถาวรกลางแจ้งที่ผลิตโดยบริษัท
 EKO รุ่น MS-110 ติดตั้งบน sun tracker อยู่บนดาดฟ้าของอาการพลังงาน (Energy Building) ของ
 สถาบันเทคโนโลยีแห่งเอเชีย อำเภอกลองหลวง จังหวัดปทุมธานี ซึ่งมีละติจูดเท่ากับ 14.08 °N
 และลองติจูดเท่ากับ 100.62 °E ดังแสดงในรูปที่ 3.2 โดยเครื่องดังกล่าวจะทำการวัดกวามเข้ม
 รังสีดวงอาทิตย์ที่กวามยาวกลื่นทั้งหมด 5 กวามยาวกลื่น ดังแสดงในตารางที่ 3.2

รูปที่3.2 แสดงเครื่อง Sun photometer ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

ตารางที่ 3.2 แสดงความยาวกลื่นของเครื่อง sunphotometer ที่สถาบันเทกโนโลยีแห่งเอเชีย จังหวัดปทมธานี

9	
ช่องสัญญาณ	ความยาวคลื่น(นาโนเมตร)
1	368
2	500
3	675
4	778
5	862

เครื่อง sunphotometer นี้ประกอบด้วยหัววัดและเครื่องบันทึกข้อมูล ส่วนของหัววัดมี ลักษณะเป็นทรงกระบอกมีเส้นผ่านศูนย์กลางประมาณ 10 เซนติเมตร และจะหมุนปากกระบอก ตามดวงอาทิตย์ด้วย sun tracker แบบอัตโนมัติเพื่อให้รังสีดวงอาทิตย์ส่องตรงเข้าไปในหัววัดที่อยู่ ภายใน จากนั้นเครื่องบันทึกข้อมูลจะนำสัญญาณไฟฟ้าที่ได้ต่อเข้า data logger และบันทึกข้อมูลทุก 1 นาที ข้อมูลที่ได้จะแสดงผลเป็นค่าความต่างศักย์มีหน่วยเป็นมิลลิโวลต์ (mV) ในการนำข้อมูล มาใช้งานจะต้องนำค่าที่วัดได้ไปหารค่าแฟลเตอร์ของการสอบเทียบ (calibration factor) ของหัววัด ในแต่ละความยาวคลื่น แล้วจึงจะได้ข้อมูลเป็นค่าความเข้มรังสีตรงของดวงอาทิตย์ในแต่ละความ ยาวกลื่น ซึ่งมีหน่วยเป็นวัตต์ต่อตารางเมตร(W/m²) เครื่องมือได้ส่งไปสอบเทียบยังบริษัทผู้ผลิตเมื่อ ปี ก.ศ. 2002 ค่าแฟลเตอร์ของการสอบเทียบของแต่ละความยาวคลื่นจะแสดงในตารางที่ 3.3

ตารางที่ 3.3 แสดงค่าแฟคเตอร์ของการสอบเทียบของแต่ละความยาวคลื่น

	ความยาวคลื่น (nm)	แฟคเตอร์บ	องการสอบเทียบ (mV)	
	368		4.30	
	500		5.68	
UMDI		UNAS	4.98 (5.29))UAUE	ĨM5
	862		3.22	

ข้อมูลที่เป็นสัญญาณไฟฟ้าจากหัววัด จะถูกบันทึกลง data logger โดยมีเจ้าหน้าที่ของ AIT เป็นผู้ดูแลเครื่องมือและ load ข้อมูล ผู้วิจัยนำข้อมูลซึ่งเป็นค่าความต่างศักย์มาใช้วิเคราะห์หา ความลึกเชิงแสงของฝุ่นละออง

3.1.1.3 การวัดที่คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร (สถานีนครปฐม)

ในการวัดความเข้มรังสีดวงอาทิตย์จะใช้เครื่อง Multi-filter rotating shadowband radiometer (MFR-7) ซึ่งมีหลักการพื้นฐานเหมือนกับเครื่อง Sunphotometer กล่าวคือสามารถวัด ความเข้มรังสีตรงในช่วงความยาวคลื่นแคบๆ ที่ 6 ความยาวคลื่น ดังแสดงในตารางที่ 3.4 เครื่องวัด ดังกล่าวผลิตโดยบริษัท Yankee Environment Eystem รุ่น MFRSR-1 ดังแสดงในรูปที่ 3.3 เครื่อง MFR-7 นี้จะประกอบด้วยหัววัดและเครื่องบันทึกข้อมูล โดยส่วนของหัววัดจะมีแผ่นโลหะเป็นแถบ กว้างประมาณ 0.5 cm ซึ่งจะหมุนไปบังหัววัด ตามช่วงเวลาที่กำหนดไว้ ระหว่างที่หัววัดไม่ถูกบัง sensor จะทำหน้าที่วัดรังสีรวม และเมื่อหัววัดถูกบัง sensor จะวัดค่ารังสีกระจาย และจากค่ารังสีรวม และรังสีกระจายจะสามารถหาค่ารังสีตรงได้ ในส่วนของการบันทึกข้อมูลผู้วิจัยได้ตั้งโปรแกรม บันทึกข้อมูลทุกๆ 24 วินาที แล้วทำการเฉลี่ยทุกๆ 6 นาที แล้วจึงบันทึกข้อมูลเฉลี่ยลงในเครื่อง บันทึกซึ่งจะมีโปรแกรมคอมพิวเตอร์ภายในช่วยในการคำนวณก่ารังสีตรงโดยมีหน่วยเป็น วัตต์ต่อ ตารางเมตร (W/m²) พร้อมทั้งกำนวณก่าโคไซน์ของมุมควงอาทิตย์ (Cosine of Zenith) ซึ่งสามารถ นำไปกำนวณหาก่ามวลอากาศ(air mass) ในขณะนั้นได้ด้วย เกรื่องดังกล่าวได้ทำการติดตั้งอยู่บน ดาดฟ้าของอาการวิทยาศาสตร์ 1 กณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จังหวัดนกรปฐม และ ได้ส่งไปสอบเทียบยังบริษัทผู้ผลิตเมื่อเดือน เมษายน ค.ศ. 2003 ผู้วิจัยเป็นผู้ดูแลรับผิดชอบการวัด และการ load ข้อมูล

รูปที่ 3.3 แสดงเครื่อง Multi-filter rotating shadow band radiometer (MFR-7) ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

ตารางที่ 3.4 แสดงความยาวคลื่นของเครื่อง Multi-filter rotating shadowband radiometer (MFR-7) ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

ช่องสัญญาณ	ความยาวคลื่น(นาโนเมตร)
1	Broadband (300-1100)
2	413
3	500
4	613
5	691
6	863
7	940

้สำหรับค่าช่วงกว้างความยาวคลื่น (band width) จะมีค่าเท่ากับ 10 nm ซึ่งมีช่วงการ ตอบสนองดังกราฟรูปที่ 3.4

รูปที่ 3.4 การตอบสนองของความยาวกลื่นของเครื่อง MFR-7 3.1.2 ข้อมูล

ถึงแม้ว่าข้อมูลความเข้มรังสีควงอาทิตย์จาก sunphotometer ทั้ง 3 แห่ง จะมีการวัดและ บันทึกข้อมูลมาหลายปีแล้วก็ตาม แต่ผู้วิจัยจะเลือกใช้ข้อมูลเฉพาะในช่วงวันที่ 1 มกราคม ค.ศ. 2004 จนถึงวันที่ 31 ธันวาคม ค.ศ. 2005 รวมเวลาประมาณ 2 ปี ทั้งนี้เพราะเป็นการวัคหลังจากที่ โดยข้อมูลที่นำมาใช้จะเลือกเฉพาะในช่วงเวลาที่ท้องฟ้า เครื่องมือได้รับการสอบเทียบใหม่แล้ว ้ปราศจากเมฆ ซึ่งบอกได้จากข้อมูลปริมาณเมฆ ซึ่งบอกได้จากข้อมูลปริมาณเมฆ กรณีของการวัด ที่คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จะบอกสภาพท้องฟ้าจากข้อมูลภาพถ่ายท้องฟ้าซึ่งได้จาก เครื่อง sky camera

เพื่อความสะดวกในการอ้างถึงผู้วิจัยจะเรียกชื่อสถานที่วัดต่างๆ ว่าเป็นสถานีวัด ทั้งนี้เพราะ ้เป็นการวัดต่อเนื่องประจำระยะยาว โดยจะเรียกการวัดที่กรมอุตุนิยมวิทยาบางนา ว่าสถานึกรุงเทพฯ การวัดที่สถาบันเทคโนโลยีแห่งเอเชีย จะเรียกว่า สถานี AIT และการวัดที่คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จะเรียกว่า สถานีนครปฐม สำหรับข้อมูลสเปกตรัมรังสีควงอาทิตย์จาก sunphotometer ทั้งหมดและรายละเอียดสถานีได้แสดงไว้ตามตารางที่ 3.5

a		a	a	ע
ตารางท 3 5	แสดงรายละ	ะเอยดสถ	านและ	เขอมล
1110 111 2.2			1 000014	

สถานี	พิกัด		ช่วงเวลาข้อมูล	ข้อมูลที่นำมาใช้
	Lattitude	Longitude		
1.สถานีกรุงเทพฯ	13.73	100.57	ราย 3 ชม.	174
2.สถานี้ AIT	14.08	100.62	ราย 5 นาที่ (2004)	324
			ราย 1 นาที่ (2005)	
3. สถานีนครปฐม	13.82	100.04	ราย 6 นาที	335

3.1.3 วิธีการ

วิธีการในการหาค่าความลึกเชิงแสงของฝุ่นละอองของแต่ละสถานี จะแตกต่างกันออกไป ดังนั้นผู้วิจัยจะขออธิบายวิธีการของแต่ละสถานีดังนี้

3.1.3.1 ข้อมูลจากการวัดที่สถานีนครปฐม

ในการนำข้อมูล MFR-7 มาใช้หาก่าความลึกเชิงแสงของฝุ่นละออง ผู้วิจัยจะใช้ ข้อมูลความเข้มรังสีตรงที่ความยาวกลื่น 413, 500, 613, 675 และ 863 นาโนเมตร มาทำการ วิเคราะห์โดยใช้กฎของ Bouguer's ซึ่งแสดงความสัมพันธ์ของความเข้มรังสีตรงของแต่ละความ ยาวกลื่นที่ตกกระทบพื้นผิวโลกกับค่าความลึกเชิงแสงของโมเลกุลอากาศ ฝุ่นละออง ไอน้ำ โอโซน และก๊าซต่างๆ ความสัมพันธ์ดังกล่าวเขียนในรูปสมการได้ดังนี้

$$I_{n\lambda} = I_{on\lambda} \exp\left[-\left(\tau'_{a\lambda} + \tau'_{r\lambda} + \tau'_{o\lambda} + \tau'_{w\lambda} + \tau'_{g\lambda}\right)m_a\right]$$
(3.1)

- เมื่อ I_{กง} เป็นก่าความเข้มรังสีตรงเฉพาะขณะ (irradiance) ตกตั้งฉากกับระนาบการเกลื่อนที่ ของควงอาทิตย์
 - I_{on} เป็นค่าความเข้มรังสีดวงอาทิตย์เฉพาะขณะนอกบรรยากาศโลก ซึ่งตกตั้งฉากกับ ระนาบของดวงอาทิตย์
 - τ'_{sλ} เป็นค่าความลึกเชิงแสง (optical depth) ของก๊าซเนื่องจากการกระเจิงของ
 รังสีควงอาทิตย์
 - τ'_{rλ} เป็นค่าความลึกเชิงแสงของโมเลกุลอากาศเนื่องจากการกระเจิงรังสีควงอาทิตย์
 (Rayleigh scattering)
 - $au'_{o\lambda}$ เป็นค่าความลึกเชิงแสงของโอโซนเนื่องจากการดูดกลื่นของรังสีดวงอาทิตย์
 - $au'_{_{w\lambda}}$ เป็นก่ากวามลึกเชิงแสงของไอน้ำในบรรยากาศเนื่องจากการดูดกลืนรังสีดวงอาทิตย์

- τ'_{aλ} เป็นค่าความลึกเชิงแสงของฝุ่นละอองในบรรยากาศเนื่องจากการกระเจิงและการ
 ดูดกลืนรังสีดวงอาทิตย์
- *m*_a เป็นมวลอากาศ

เมื่อใส่ ln ทั้ง 2 ด้านของสมการ (3.1) จะได้

$$\ln I_{n\lambda} = \ln I_{on\lambda} - \left(\tau'_{a\lambda} + \tau'_{r\lambda} + \tau'_{o\lambda} + \tau'_{w\lambda} + \tau'_{g\lambda}\right) m_a$$
(3.2)

้ จัครูปสมการ (3.2) ใหม่ จะได้สมการของความถึกเชิงแสงของฝุ่นละอองดังนี้

$$\tau'_{a\lambda} = \frac{\ln I_{n\lambda} - \ln I_{on\lambda}}{m_a} - \left(\tau'_{r\lambda} + \tau'_{o\lambda} + \tau'_{w\lambda} + \tau'_{g\lambda}\right)$$
(3.3)

ในกาหาค่าความลึกเชิงแสงของฝุ่นละอองจะหาทีละความยาวคลื่น เช่นที่ความยาวคลื่น 413 นาโนเมตร พบว่าที่ความยาวคลื่นนี้ไม่ถูกดูคกลืนโดยไอน้ำ และก๊าซต่างๆ ซึ่งสามารถ พิจารณาได้จากกราฟ การส่งผ่านของรังสีดวงอาทิตย์เนื่องจากองก์ประกอบต่างๆในบรรยากาศได้ จากรูปที่3.5

รูปที่3.5 แสดงการส่งผ่านของรังสีดวงอาทิตย์เนื่องจากองค์ประกอบต่างๆในบรรยากาศ

ดังนั้นจึงเหลือองค์ประกอบในบรรยากาศที่เราต้องพิจารณาเพียงแก่ 3 องค์ประกอบ คือ ฝุ่นละออง โมเลกุลอากาศ และโอโซน สมการที่ (3.3) จึงเขียนได้ใหม่ดังนี้

$$\tau'_{a\lambda} = \frac{\ln I_{on\lambda} - \ln I_{n\lambda}}{m_a} - (\tau'_{o\lambda} + \tau'_{r\lambda})$$
(3.4)

จากสมการที่(3.4) ค่าความเข้มรังสีควงอาทิตย์เฉพาะขณะนอกบรรยากาศโลกซึ่งตกตั้งฉาก กับระนาบของควงอาทิตย์เป็นก่าคงที่ของแต่ละความยาวคลื่น สามารถหาได้จากตารางในเอกสาร อ้างอิง (Iqbal , 1983)

ค่า $\tau'_{o\lambda}$ สามารถคำนวณได้จาก

$$\tau'_{o\lambda} = K_{o\lambda}l \tag{3.5}$$

มื่อ K_o, เป็น extinction coefficient ของโอโซน(cm⁻¹)

ค่า τ'_r, สามารถคำนวณได้จาก

$$\tau'_{r\lambda} = 0.008735 \ \lambda^{-4.08} \tag{3.6}$$

เมื่อ λ เป็นความยาวคลื่น (μm)

และ m_a ซึ่งคำนวณได้จาก

$$m_a = m_r \left(\frac{P}{P_0}\right) \tag{3.7}$$

เมื่อ *m*, เป็นมวลอากาศที่กวามกดคันและอุณหภูมิมาตรฐาน (NTP)

P เป็นความคันบรรยากาศของสถานีวัคที่ทำการหาความเข้มรังสีควงอาทิตย์

P₀ เป็นความดันบรรยากาศมาตรฐาน (mbar)

โดยค่า m, คำนวณได้จาก

$$m_r = [\cos \theta_r + 0.15(93.885 - \theta_r)^{-1.253}]^{-1}$$
(3.8)

เมื่อ θ_z เป็นมุมซินิธของควงอาทิตย์

เมื่อแทนค่าต่างๆที่หาได้แล้ว ลงในสมการที่ (3.4) ก็จะสามารถหาค่าความลึกเชิงแสงของ ฝุ่นละอองๆ ได้

หลังจากได้ค่าความลึกเชิงแสงของฝุ่นละอองแล้ว เราสามารถนำค่าความลึกเชิงแสงของ ฝุ่นละอองที่ 2 ความยาวคลื่นมาคำนวณสัมประสิทธิ์ความขุ่นมัวของอังสตรอม (Angstrom's turbidity coefficient) โดยอาศัยสมการ

$$\tau'_{a\lambda} = \beta \lambda^{-\alpha}$$
 (3.9)
มื่อ τ'_{a} , เป็นความลึกเชิงแสงของฝุ่นละออง
 β เป็นสมประสิทธิ์ความขุ่นม้วของอังสตรอม
 α เป็น wavelength exponent

 λ เป็นความยาวคลื่น (หน่วย μm)

ในการหาค่า β ต้องใช้ข้อมูลจากการวัดที่ 2 ความยาวคลื่นนั้นคือ λ₁และ λ₂ กรณีข้อมูล ของมหาวิทยาลัยศิลปากร จังหวัดนครปฐม ผู้วิจัยได้เลือกความยาวคลื่นที่ 413 และ 863 nm เพราะ ที่ความยาวคลื่นทั้ง 2 นี้ไม่ถูกดูดกลืนโดยโอโซน ไอน้ำ และก๊าซต่างๆ ดังนั้นจากสมการที่ (3.9) จะเขียนได้เป็น

$$\tau'_{a,413_1} = \beta (0.413)^{-\alpha} \tag{3.10}$$

$$\tau'_{a,863} = \beta (0.863)^{-\alpha} \tag{3.11}$$

จากสมการ (3.10) และ (3.11) เราสามารถหาค่า eta และ lpha ได้ดังนี้

$$\alpha = \frac{ln\left(\frac{\tau'_{a,413}}{\tau'_{a,863}}\right)}{ln\left(\frac{0.863}{0.413}\right)}$$
(3.12)

$$\beta = \frac{\tau'_{a,413}}{(0.413)^{-\alpha}} \qquad \text{NSO} \qquad \beta = \frac{\tau'_{a,863}}{(0.863)^{-\alpha}} \tag{3.13}$$

3.1.3.2 ข้อมูลจากการวัดที่สถานี AIT

ในการนำข้อมูล sunphotometer มาใช้หาก่าความลึกเชิงแสงเนื่องจากฝุ่นละออง จะใช้ข้อมูลความเข้มรังสีตรงที่ความยาวคลื่น 378, 500, 675 และ 778 นาโนเมตร ซึ่งวิธีการ คำเนินการจะคล้ายกับกรณีข้อมูลที่มหาวิทยาลัยศิลปากร กล่าวคือจะใช้กฎของ Bouguer แต่ เนื่องจากข้อมูลที่บันทึกได้เป็นก่าความต่างศักย์ที่มีหน่วยเป็นมิลลิโวลต์ (mV) ดังนั้นการใช้งาน จะต้องนำก่าที่วัดได้ ไปคูณกับแฟกเตอร์สำหรับแก้ผลของระยะทางระหว่างโลกกับดวงอาทิตย์ (mean sun – earth distance, S) แล้วจึงนำไปหารค่าแฟกเตอร์ของการสอบเทียบของหัววัดในแต่ละ ความยาวคลื่น ซึ่งจะได้ก่าความลึกเชิงแสงเนื่องจากฝุ่นละอองตามสมการ

$$\tau'_{a\lambda} = \frac{ln\left(\frac{E_{o\lambda}}{E_{\lambda} \cdot S}\right)}{m_{a}} - \left(\tau'_{o\lambda} + \tau'_{r\lambda} + \tau'_{w\lambda} + \tau'_{g\lambda}\right)$$
(3.14)

- เมื่อ *E_o*, เป็นค่าแฟกเตอร์ของการสอบเทียบของหัววัดในแต่ละความยาวกลิ่นดังที่ได้แสดงใน ตารางที่ 3.2
 - E_{λ} เป็นศักย์ไฟฟ้าที่ได้จากเครื่องวัคมีหน่วยเป็นมิลลิโวลต์ (mV)
 - S เป็นแฟคเตอร์สำหรับแก้ผลการเปลี่ยนแปลงระยะทางระหว่างโลกกับควงอาทิตย์
 ซึ่งแสดงไว้ในตารางที่ A.1 ของภาคผนวก ข.

แต่เนื่องจากที่ความยาวคลื่นในช่วง 378 nm ถึง 778 nm ไม่มีการดูคกลืนของไอน้ำและ ก๊าซอื่น ๆ เราสามารถตัดค่า $\tau'_{w\lambda}$ และ $\tau'_{s\lambda}$ ออกจากสมการนี้ซึ่งสามารถเขียนใหม่ได้เป็น

$$\tau'_{a\lambda} = \frac{ln\left(\frac{E_{o\lambda}}{E_{\lambda} \cdot S}\right)}{m_{a}} - \left(\tau'_{o\lambda} + \tau'_{r\lambda}\right)$$
(3.15)

สำหรับค่าสัมประสิทธิ์ความขุ่นมัวของอังสตรอม จะใช้ค่าความลึกเชิงแสงเนื่องจากฝุ่น ละอองที่ 2 ความยาวคลื่น โดยเลือกความยาวคลื่นที่ 378 และ 778 nm เพราะที่ความยาวคลื่นทั้ง 2 นี้ไม่ถูกดูดกลืนโดยโอโซน ไอน้ำ และก๊าซต่างๆ ดังนั้นจะสามารถหาค่าสัมประสิทธิ์ความขุ่นมัว ของอังสตรอมได้จากสมการที่ (3.9)

3.1.3.3 ข้อมูลที่ได้จากการวัดที่สถานึกรุงเทพฯ

เนื่องจากข้อมูล sunphotometer ของกรมอุตุนิยมวิทยาบางนา ที่บันทึกผลเป็น digital count ไม่สามารถนำมาคำนวณค่าความลึกเชิงแสงของฝุ่นละอองโดยตรงได้จากสมการ (3.3) ได้ จำเป็นต้องหาค่า *ln I_{on}*, ในรูปของ digital count ด้วย ผู้วิจัยจึงนำกฎของ Bouguer มา เขียนในรูปของสมการลอกาลิทึมดังนี้

กรณีที่เลือกความยาวคลื่นที่ไม่มีผลจากไอน้ำและก๊าซ จะเขียนสมการใหม่ได้เป็น

$$\ln I_{n\lambda} = \ln I_{on\lambda} - \left(\tau'_{a\lambda} + \tau'_{r\lambda} + \tau'_{o\lambda}\right)m_a$$
(3.16)

สมการนี้เมื่อนำค่า $ln I_{n\lambda}$ มาเขียนกราฟกับ m_a จะได้สมการเส้นตรงซึ่งมีจุดตัดแกนเป็น $ln I_{on\lambda}$ ตามตัวอย่างดังรูป

รูปที่ 3.6 กราฟความสัมพันธ์ระหว่างค่า $ln I_{on\lambda}$ กับ m_a

จากนั้นผู้วิจัยจะนำค่า In I _{on}, ที่ได้ไปใช้คำนวณค่าความลึกเชิงแสงของฝุ่นละอองที่ความ ยาวคลื่น 500 nm โดยอาศัยสมการ (3.3)

3.1.4 การวิเคราะห์ข้อมูล

ในการหาค่าความถึกเชิงแสงจากข้อมูลสเปกตรัมรังสีควงอาทิตย์ที่ได้จากการวัดของทั้ง 3 สถานี ผู้วิจัยจะดำเนินการตามลำคับขั้นตอนคังนี้

 เลือกข้อมูลช่วงที่ท้องฟ้าปราศจากเมฆ โดยกรณีข้อมูลของสถานีนครปฐม จะสังเกต ด้วยสายตา และการสังเกตจากภาพถ่ายท้องฟ้าที่ได้จาก sky camera สำหรับสถานี อุตุนิยมวิทยาบางนา จะใช้ข้อมูลเมฆ และการสังเกตลักษณะการเปลี่ยนแปลงของ ความเข้มรังสีดวงอาทิตย์ กรณีสถานี AIT จะอาศัยการดูลักษณะการเปลี่ยนแปลงรังสี ดวงอาทิตย์ ตัวอย่างลักษณะการเปลี่ยนแปลงความเข้มรังสีดวงอาทิตย์ของวันที่ ท้องฟ้าปราศจากเมฆของนครปฐม แสดงได้ดังรูปที่ 3.7 ผู้วิจัยจะเลือกใช้ข้อมูลที่ ท้องฟ้าปราศจากเมฆทั้งวันทั้งท้องฟ้าและปราศจากเมฆเฉพาะตรงตำแหน่งควงอาทิตย์ ด้วย

รูปที่ 3.7 แสดงการเปลี่ยนแปลงความเข้มรังสีรวมและรังสีตรงของควงอาทิตย์ในวันที่ ท้องฟ้าปราศจากเมฆ (25 กุมภาพันธ์ 2004)

12:30

รูปที่ 3.8 แสดงลักษณะท้องฟ้าจาก sky camera ในวันที่ท้องฟ้าปราศจากเมฆ

14:30

รูปที่ 3.9 แสดงลักษณะท้องฟ้าจาก sky camera ในวันที่ท้องฟ้ามีเมฆ

15:30

 นำข้อมูลความเข้มรังสีควงอาทิตย์แต่ละความยาวคลื่นที่ได้จาก sunphotometer หาค่า ความลึกเชิงแสงตามสมการที่ (3.4) และ สมการที่ (3.15) แล้วแต่กรณี ซึ่งจะได้ค่า ความลึกเชิงแสงรวมที่มีผลจากโอโซนและโมเลกุลอากาศ จากนั้นนำค่าความลึกเชิง แสงที่ได้ของแต่ละเวลามาเขียนกราฟกับค่าความยาวคลื่น ดังที่แสดงในรูป

รูปที่ 3.10 แสดงตัวอย่างการแปรค่าความลึกเชิงแสงของฝุ่นละออง $(au'_{a\lambda})$ โมเลกุลอากาศ $(au'_{r\lambda})$ และโอโซน $(au'_{o\lambda})$ กับความยาวคลื่นที่เวลาต่างๆ ของข้อมูลสถานีนครปฐม วันที่ 25 กุมภาพันธ์ 2004

3). คำนวณความลึกเชิงแสงของฝุ่นละออง $(\tau'_{a\lambda})$ โดยการแก้ค่าผลจากโมเลกุลอากาศ และ โอโซน โดยอาศัยสมการที่ (3.5) และ (3.6) และใช้ข้อมูลโอโซนจากดาวเทียม

TOMS/EP ทำการคำนวณทั้ง 3 สถานี โดยข้อมูลปริมาณโอโซน ของทั้ง 3 สถานีจะ แสดงไว้ในตารางที่ A.2 – A.7 ของภาคผนวก ข. ตัวอย่างผลที่ได้แสดงดังรูปที่ 3.11

รูปที่ 3.11 แสดงตัวอย่างการแปรค่าตามเวลาของความลึกเชิงแสงของฝุ่นละออง ($au'_{a\lambda}$) กับ ความยาวคลื่นที่เวลาต่างๆ ของข้อมูลสถานีนครปฐม วันที่ 25 กุมภาพันธ์ 2004

 ที่แต่ละความยาวคลื่นจะนำค่าความลึกเชิงแสงของแต่ละเวลามาหาค่าเฉลี่ยรายวันจะ ได้ค่าความลึกเชิงแสงเฉลี่ยวันละ 1 ค่า ดังตัวอย่างที่แสดงในตารางที่ 3.6

ตารางที่3.6 แสดงค่าความลึกเชิงแสงของสถานีนครปฐมจากข้อมูลเคือนมกราคม ค.ศ. 2004

		AOD					
	Date	413	500	613	671	864	
	1	0.376	0.403	0.281	0.200	0.155	
	2	0.547	0.539	0.370	0.261	0.196	
	3	0.551	0.537	0.371	0.267	0.203	
	4	0.490	0.491	0.336	0.236	0.178	
	5	0.657	0.634	0.439	0.307	0.228	
	6	0.668	0.650	0.462	0.333	0.256	
	7	0.646	0.619	0.432	0.311	0.239	
	8	0.581	0.571	0.396	0.281	0.214	
	9	0.849	0.810	0.585	0.432	0.334	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
			tan In	AS C	ind I	ana	MÉ
. 110	14						
	15	-	-	-	-	-	
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

JIM

5). นำค่าความลึกเชิงแสงเฉลี่ยรายวันที่ได้ไปทำการวิเคราะห์การเปลี่ยนแปลงตาม รายละเอียดในหัวข้อถัดไป

3.1.5 การเปลี่ยนแปลงค่าความลึกเชิงแสงในรอบวัน

เมื่อทราบองก์ประกอบต่างๆในบรรยากาศ จะสามารถหาค่าความถึกเชิงแสงของฝุ่นละออง ที่มีการเปลี่ยนแปลงในรอบวันได้ โดยใช้สมการที่ (3.4) และ สมการที่ (3.15) แล้วแต่กรณี ตัวอย่าง ผลที่ได้ของทั้ง 3 สถานีจะแสดงได้ดังกราฟในรูปที่ 3.12 – รูปที่ 3.14 โดยส่วนใหญ่จะพบว่าค่า ความลึกเชิงแสงของฝุ่นละอองในช่วงเช่าจะมีค่าสูงแล้วค่อยๆ ลคลงจนถึงช่วงเย็น

AOD 3 Febuary 2005 (NP)

รูปที่ 3.12 แสดงค่าความลึกเชิงแสงเนื่องจากฝุ่นละอองที่เปลี่ยนแปลงในรอบวันของ มหาวิทยาลัยศิลปากร จังหวัดนครปฐม ในวันที่ 3 กุมภาพันธ์ ค.ศ. 2005

รูปที่ 3.14 แสดงค่าความลึกเชิงแสงเนื่องจากฝุ่นละอองที่เปลี่ยนแปลงในรอบวันของ กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานครในวันที่ 19 เมษายน ค.ศ. 2004

3.1.6 การเปลี่ยนแปลงค่าความลึกเชิงแสงตามฤดูกาลในรอบปี

หลังจากนั้นนำค่าความลึกเชิงแสงของฝุ่นละอองที่หาได้ตลอดทั้งวัน มาเฉลี่ยเป็นค่ารายวัน แล้วนำมาเขียนกราฟกับเวลา เนื่องจากค่าความลึกเชิงแสงของฝุ่นละอองที่ใช้ในการคำนวณผลของ ฝุ่นละออง นิยมใช้ค่าที่ความยาวคลื่น 500 nm ประกอบกับข้อมูลที่ทำการวัดทั้ง 3 สถานี มีการวัดที่ ความยาวคลื่น 500 nm เหมือนกัน ดังนั้นผู้วิจัยจึงเลือกศึกษาการเปลี่ยนแปลงของความลึกเชิงแสง ที่ความยาวคลื่น 500 nm (สำหรับค่าความลึกเชิงแสงที่ความยาวคลื่นอื่นจะแสดงไว้ในภาคผนวก ค. – ภาคผนวก จ. ในตารางที่B.1-D.24)

การเปลี่ยนแปลงความลึกเชิงแสงตามฤดูกาลในรอบปีของสถานีกรุงเทพฯ นครปฐม และ AIT จะแสดงไว้ในรูปที่ 3.15 - 3.17 และรูปที่ 3.18 จะแสดงการเปรียบเทียบผลของทั้ง 3 สถานี

รูปที่ 3.15 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ในรอบปีที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.16 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.17 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่กรมอุตุนิยมวิทยาบางนา จังหวัดกรุงเทพมหานคร

จากกราฟทั้ง 3 พบว่ามีการเปลี่ยนแปลงไปในทางเดียวกันกล่าวคือ ค่าความลึกเชิงแสงของ ฝุ่นละอองจะมีค่าสูงในฤดูแล้งโดยจะมีค่าประมาณ 0.4-1.2 ส่วนในช่วงฤดูฝนจะมีค่าความลึกเชิง แสงของฝุ่นละอองต่ำ โดยมีค่าน้อยกว่า 0.4 ทั้ง 2 ปี แต่ในช่วงเดือนตุลาตม ค.ศ. 2004 จะเห็นว่าค่า AOD สูงกว่า 0.4 ทั้งๆที่เป็นช่วงปลายฤดูฝน เป็นเพราะว่าในเดือนดังกล่าวตลอดทั้งเดือนไม่มีฝนตก
ซึ่งต่างกับเดือนเดียวกันในปีค.ศ. 2005 ซึ่งมีฝนตกตลอดทั้งเดือนและมีฝนตกเรื่อยมาจนถึงเดือน ธันวาคม ค.ศ. 2005 จึงส่งผลให้ในปีค.ศ. 2005 มีก่า AOD น้อยกว่า ปีค.ศ. 2004

รูปที่ 3.18 แสดงการเปรียบเทียบการเปลี่ยนแปลงความลึกเชิงแสงของ 3 สถานี จากรูปจะเห็นว่า ค่าความลึกเชิงแสงของฝุ่นละอองทั้ง 3 สถานีมีลักษณะการแปรค่าตาม ฤดูกาลในรอบปีที่สอดคล้องกัน กล่าวคือจะมีค่าค่อนข้างสูงในเดือนมกราคม ถึงเดือนเมษายน ซึ่ง เป็นช่วงฤดูแล้ง (dry season) จากนั้นจะค่อยๆ ลดลงและมีค่าต่ำในเดือนพฤษภาคม ถึงเดือนตุลาคม ซึ่งเป็นช่วงฤดูฝน (rainy season) ทั้งนี้เพราะในช่วงฤดูแล้งมีฝุ่นละอองที่เกิดจากพื้นดินฟุ้งกระจาย ขึ้นสู่บรรยากาศเนื่องจากลมและการลอยตัวของอากาศร้อน รวมถึงการเผาใหม้ชีวะมวลต่างๆ ใน ช่วงฤดูแล้งทำให้ปริมาณของฝุ่นละอองในบรรยากาศมีค่าสูง โดยก่าความลึกเชิงแสงของฝุ่นละออง ในช่วงดังกล่าวมีค่าสูงสุดประมาณ 1.2 สำหรับในช่วงฤดูฝนอิทธิพลจากฝนทำให้มีการร่วงหล่น ของฝุ่นละอองลงสู่พื้นดินทำให้ปริมาณของฝุ่นละอองในบรรยากาศลดลง ค่าความลึกเชิงแสง ในช่วงดังกล่าวมีค่าสูงสุดประมาณ 1.4

> โดยค่าความลึกเชิงแสงของฝุ่นละอองเฉลี่ยทั้งปีที่ความยาวคลื่น 500 nm ของสถานึกรุงเทพ สถานี AIT และสถานึนครปฐมเท่ากับ 0.55 ± 0.31, 0.46 ± 0.26 และ 0.47±0.25 ตามลำคับ

> สำหรับค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นอื่นๆ ของทั้ง 3 สถานีสามารถหา ได้โดยใช้วิธีการเดียวกัน ที่สถานีนครปฐมผลที่ได้แสดงในรูปที่ 3.19- รูปที่3.23 และรูปที่ 3.24 – รูปที่ 3.27 แสดงการเปรียบเทียบค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นอื่นๆ ของสถานี

รูปที่ 3.20 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 613 นาโนเมตร ของมหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.21 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ค<u>ว</u>ามยาวคลื่น 671 นา<u>โ</u>นเมตร ของมหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.22 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 864 นาโนเมตร ของมหาวิทยาลัยศิลปากร จังหวัดนครปฐม

Month

รูปที่ 3.24 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่กวามยาวกลื่น 368 นาโนเมตร ของสถาบันเทกโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.25 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่กวามยาวกลื่น 368 นาโนเมตร ของสถาบันเทกโนโลยีแห่งเอเชีย

รูปที่ 3.26 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่กวามยาวกลื่น 778 นาโนเมตร ของสถาบันเทกโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.27 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่รวมทุกความยาวคลื่นตั้งแต่ 368, 500, 675 และ 778 นาโนเมตร ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.28 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 380 นาโนเมตร ของกรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

รูปที่ 3.29 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 440 นาโนเมตร ของกรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

รูปที่ 3.30 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 670 นาโนเมตร ของกรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

รูปที่ 3.31 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่ความยาวคลื่น 870 นาโนเมตร ของกรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

รูปที่ 3.32 แสดงการเปลี่ยนแปลงความลึกเชิงแสงของฝุ่นละออง (AOD) ตามฤดูกาล ที่รวมทุกความยาวคลื่นตั้งแต่ 380 ,440, 500, 670 และ 870 นาโนเมตร ของกรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

จากราฟรูปที่ 3.23 , 3.27 และ 3.32 เป็นกราฟแสดงการเปลี่ยนแปลงความลึกเชิงแสงของ ฝุ่นละออง (AOD) ตามฤดูกาลที่รวมทุกความยาวคลื่น ของสถานีนครปฐม สถานี AIT และสถานี กรุงเทพ ตามลำดับ พบว่า ผลที่ได้มีลักษณะที่คล้ายกัน กล่าวคือ ที่ความยาวคลื่นสั้นๆ จะมีก่าความ ลึกเชิงแสงมากกว่าที่ความยาวคลื่นยาว เป็นเพราะฝุ่นละอองมีการกระเจิงรังสีควงอาทิตย์ที่ความ ยาวคลื่นสั้นมากกว่าที่ความยาวคลื่นยาว

3.1.7 การเปลี่ยนแปลงของค่า wavelenght exponent ตามฤดูกาลในรอบปี

ค่า wavelength exponent (α) จะเป็นตัวบอกขนาดของฝุ่นละออง ซึ่งโดยทั่วไปจะมีค่าอยู่ ระหว่าง 0 – 4 โดยค่า α จะมีค่าสูงเมื่อฝุ่นละอองมีขนาดเล็ก และฝุ่นละอองในธรรมชาติทั่วไปจะ มีค่า α อยู่ในช่วง 1.3 ± 0.5 ในงานวิจัยนี้ ผู้วิจัยได้ทำการหาค่า α ของฝุ่นละอองทั้ง 3 สถานี ผลที่ ได้แสดงในกราฟรูปที่ 3.33 - 3.35

รูปที่ 3.33 แสดงค่าการเปลี่ยนแปลงของ Wavelength exponent (lpha) ตามฤดูกาลในรอบปี ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.34 แสดงค่าการเปลี่ยนแปลงของ Wavelength exponent (lpha) ตามฤดูกาลในรอบปี ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.35 แสดงค่าการเปลี่ยนแปลงของ Wavelength exponent (lpha) ตามฤดูกาลในรอบปี ที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

จากรูปจะเห็นว่า ค่า Wavelength exponent, *a* มีการเปลี่ยนแปลงคล้ายกับค่าความลึก เชิงแสงของฝุ่นละออง กล่าวคือในช่วงฤดูแล้งฝุ่นละอองจะมีขนาดเล็กกว่าในช่วงฤดูฝน ทั้งนี้อาจ เป็นเพราะในช่วงฤดูฝน ฝุ่นละอองมีการดูดกลืนความชื้น หรือมีการกลั่นตัวของไอน้ำที่มีฝุ่นละออง เป็นแกนกลางจึงทำให้ฝุ่นละอองมีขนาดใหญ่ เมื่อนำค่าของ lpha มาทำการแจกแจงจะได้ผลดังรูปที่ 3.36 - 3.38

ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

จากรูปจะเห็นว่าลักษณะของการแจกแจงของทั้ง 3 สถานี มีลักษณะใกล้เคียงกัน โดยมีค่า เปอร์เซ็นต์ความถึ่ของการแจกแจงสูงสุดของค่า α อยู่ในช่วง 1.2-1.8 ซึ่งสอดคล้องกับการแจกแจง ของ α ของฝุ่นละอองในธรรมชาติทั่วไป โดยค่าเฉลี่ยทั้งปีของค่า α ของสถานึกรุงเทพ สถานึ AIT และสถานึนครปฐมเท่ากับ 1.50 ± 0.5, 1.46 ± 0.55 และ 1.54 <u>+</u> 0.52 ตามลำดับ ซึ่งถือว่า สถานีทั้ง 3 มีบรรยากาศขุ่นมัว

3.1.8 การเปลี่ยนแปลงของสัมประสิทธิ์ความขุ่นมัวของอังสตรอมตามฤดูกาลในรอบปี สัมประสิทธิ์ความขุ่นมัวของอังสตรอม (β) จะเป็นตัวบ่งชี้ปริมาณของฝุ่นละอองใน บรรยากาศ ซึ่งโดยทั่วไปค่า β จะมีค่าอยู่ระหว่าง 0.0-0.5 ค่า β สูง หมายถึงในบรรยากาศมี ปริมาณฝุ่นละอองมาก หรือในบรรยากาศมีความขุ่นมัว โดย Iqbal ได้เสนอความสัมพันธ์ระหว่าง ค่า β กับความขุ่นมัวในบรรยากาศ ดังตารางที่ 2.2 ตามที่กล่าวมาแล้วในหัวข้อที่ 2.1.9 ผู้วิจัยได้ ทำการหาค่า β จากทั้ง 3 สถานี แล้วนำมาเขียนกราฟกับเวลา ผลที่ได้แสดงในรูปที่ 3.39 – 3.41

รูปที่ 3.39 แสดงการแปรค่าสัมประสิทธิ์ความงุ่นมัวของอังสตรอม β ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปีที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.40 แสดงการแปรค่าสัมประสิทธิ์ความขุ่นม้วของอังสตรอม β ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปีที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.41 แสดงการแปรค่าสัมประสิทธิ์ความขุ่นมัวของอังสตรอม β ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปีที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานคร

จากรูปจะเห็นว่าค่า β ของทั้ง 3 สถานี มีการเปลี่ยนแปลงตามฤดูกาลในรอบปีคล้ายกัน กล่าวคือค่า β มีค่าสูงในช่วงฤดูแล้ง และลดลงในช่วงฤดูฝน สอดคล้องกับค่าความลึกเชิงแสงของ ฝุ่นละออง นอกจากนี้ถ้านำค่า β ที่ได้ไปเทียบกับตารางที่ 2.2 ตามที่ Iqbal ได้แบ่งสภาพท้องฟ้า โดยใช้ค่า β จะพบว่าในบริเวณกรุงเทพและปริมณฑล มีปริมาณฝุ่นละอองในบรรยากาศ ค่อนข้างมากและมีสภาพบรรยากาศแบบขุ่นมัว (Turbid)โดยสามารถแบ่งอย่างละเอียดได้ดังนี้ คือ

> มหาวิทยาลัยศิลปากร จังหวัดนครปฐม มีค่าการกระจายของ β อยู่ในช่วง 0.05-0.15 แสดงว่าที่จังหวัดนครปฐมมีสภาพบรรยากาศแจ่มใส (clear)

> 2. สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี มีค่าการกระจายของ β อยู่ในช่วง
> 0.05-0.25 แสดงว่าที่จังหวัดปทุมธานี มีสภาพบรรยากาศขุ่นมัว (Turbid)

กรมอุตุนิยมวิทยาบางนา จังหวัดกรุงเทพมหานคร มีค่าการกระจายของ β อยู่ในช่วง
 0.00-0.25 แสดงว่าที่จังหวัดกรุงเทพมหานคร มีสภาพบรรยากาศขุ่นมัวค่อนข้างมาก (Turbid) และ
 เมื่อนำค่า β มาแจกแจง ผลที่ได้จะแสดงไว้ในรูปที่ 3.42- รูปที่ 3.44

รูปที่ 3.43 แสดงการกระจายสัมประสิทธิ์กวามขุ่นมัวของอังสตรอม β ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปีที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.44 แสดงการกระจายสัมประสิทธิ์ความขุ่นมัวของอังสตรอม β ที่เปลี่ยนแปลง ตามฤดูกาลในรอบปีที่กรมอุดุนิยมวิทยาบางนา กรุงเทพมหานคร จากรูปจะพบว่าเปอร์เซ็นต์ความถี่ที่มีค่า β สูงสุดจะเกิดขึ้นที่ β มีค่าอยู่ในช่วง 0.1-0.2 โดยค่าเฉลี่ยทั้งปีของค่า β ของสถานึกรุงเทพ สถานี AIT และสถานึนครปฐมเท่ากับ 0.19±0.12, 0.19±0.09 และ 0.16±0.08 ตามลำดับ ซึ่งถือว่าสถานีทั้ง 3 มีบรรยากาศขุ่นมัว

3.2 การจำแนกชนิดของฝุ่นละออง

ฝุ่นละอองในบรรยากาศมีหลายชนิด แต่ละชนิดมีสมบัติในการดูดกลืนและการกระเจิง รังสีดวงอาทิตย์ที่แตกต่างกัน ในงานวิจัยนี้ผู้วิจัยจะทำการจำแนกชนิดของฝุ่นละอองของทั้ง 3 สถานีโดยอาศัยแบบจำลองการถ่ายเทรังสีของบรรยากาศ (radiative transfer model) คำนวณความ เข้มรังสีดวงอาทิตย์ในวันที่ท้องฟ้าปราศจากเมฆ แล้วทำการแปรชนิดของฝุ่นละออง จนกระทั่งผล การคำนวณสอดกล้องกับค่าความเข้มรังสีดวงอาทิตย์ที่ได้จากการวัด ตามรายละเอียดดังนี้

3.2.1 แบบจำลองการถ่ายเทรังสีของบรรยากาศ (radiative transfer model)

เมื่อรังสีควงอาทิตย์ผ่านบรรยากาศในสภาพท้องฟ้าปราศจากเมฆ จะถูกกระเจิงและดูดกลืน โดยองค์ประกอบต่างๆ ของบรรยากาศ อาศัยหลักการและความสัมพันธ์ของตัวแปรต่างๆ ทาง ฟิสิกส์ เราสามารถคำนวณรังสีดวงอาทิตย์ ณ จุดต่างๆ ในบรรยากาศได้ เราจะเรียกสมการ ความสัมพันธ์ดังกล่าวว่า แบบจำลองการถ่ายเทรังสีของบรรยากาศ ในอดีตที่ผ่านมาได้มีการพัฒนา แบบจำลองการถ่ายเทร้งสีหลายแบบจำลอง เช่น LOWTRAN MODTRAN LIBLADTRAN UVSPEC และ 5S ในงานวิจัยนี้ ผู้วิจัยจะเลือกใช้แบบจำลอง 5S ซึ่งพัฒนาโดย Tanre´et al (1987) (โดยจะกล่าวถึงแบบจำลองอย่างละเอียดในภาคผนวก ก.) ทั้งนี้เพราะเป็นแบบจำลองที่ สามารถประยุกต์ใช้ได้ทั่วไป และไม่ยุ่งยากในการคำนวณมากนักอีกทั้งยังมีความละเอียดถูกต้อง ก่อนข้างสูง ในการคำนวณโดยใช้แบบจำลองดังกล่าวต้องใส่ข้อมูลพื้นฐาน 5 อย่างคือ

- มุมเซนิธ (zenith angle) และมุมอาซึมุธ (azimuth angle) ของควงอาทิตย์ ซึ่งจะ เปลี่ยนแปลงตลอดเวลาในรอบวัน
- ข้อมูลปริมาณโอโซน ผู้วิจัยได้ใช้ข้อมูลนี้จากเครื่องวัด Total Ozone Mapping Spectrometer (TOMS) ซึ่งติดตั้งอยู่บนดาวทียม Earth Probe (EP) ขององค์การ NASA ดังแสดงในรูปที่ 3.45 โดยดาวทียมดังกล่าวจะวัดค่าปริมาณโอโซนวันละ 1 ครั้ง และ แต่ละครั้งจะมีความละเอียดเชิงพื้นที่ (spatial resolution) 1° ตามแนวละติจูด และ 1.25° ตามแนวลองจิจูด โดยจะใช้ข้อมูลปริมาณโอโซนที่ได้จากเครื่องวัด TOMS ใน ช่วงปี 2004 – 2005

บหาวิทชาลัยศีลปากร สงวนลิบสิทธิ์

รูปที่ 3.45 แสดงคาวเทียม Earth Probe (EP)

 ข้อมูลปริมาณ ใอน้ำ ผู้วิจัย ได้ใช้ข้อมูลนี้จากข้อมูลตรวจอากาศชั้นบนจากอุปกรณ์ radiosonde ของกรมอุตุนิยมวิทยาซึ่งทำการตรวจวัดทุกวันที่เวลา 07.00 น. ซึ่งจะทำ การวัดอุณหภูมิและความชื้นสัมพันธ์ที่ระดับความดันบรรยากาศต่างๆ โดยการคำนวณ จะเริ่มจากการคำนวณค่าความคันไอน้ำอิ่มตัว (P_{vs}) ที่กรมอุตุนิยมวิทยาซึ่งทำการวัดที่ เขตบางนา จังหวัดกรุงเทพมหานคร หลังจากนั้นจะคำนวณค่าความคันไอน้ำ (P_v) โดยอาศัยข้อมูลความชื้นสัมพัทธ์ (rh) จาก radiosonde และค่า P_{vs} จากนั้นทำการ คำนวณหาค่า mixing ratio (M) โดยใช้ข้อมูลความคันบรรยากาศ (P) ซึ่งได้จาก radiosonde และค่าความคันไอน้ำ (P_v) โดยความคันไอน้ำอิ่มตัวสามารถคำนวนได้ จากสมการ

$$P_{\nu s} = \begin{cases} 6.1078 x 10^{(7.5T/(273.3+T))} & ; T > 0 \ ^{\circ}C \\ 6.1078 x 10^{((9.321T)/(261.24+T))} & ; T < 0 \ ^{\circ}C \end{cases}$$
(3.20)

เมื่อ $P_{\nu s}$ เป็นความคันไอน้ำอิ่มตัว (saturated vapour water) [mbar]

T เป็นอุณหภูมิของอากาศ (°C)

ในขณะเดียวกันความชื้นสัมพัทธ์ของอากาศมีความสัมพันธ์กับความคันของไอน้ำ ดัง สมการที่ (3.21)

เมื่อ *rh* เป็นความชื้นสัมพัทธ์ (%) *P*, เป็นความคันไอน้ำ [mbar]

จากคุณสมบัติของอากาศชื้น (moist air) สามารถหาความสัมพันธ์ของ mixing ratio (M) กับความดันบรรยากาศและความดันไอน้ำได้ดังนี้

$$M = 0.622 \frac{P_v}{P - P_v}$$
(3.22)

เมื่อ P เป็นความคันบรรยากาศ [mbar]

โดย Mixing ratio (M) เป็นอัตราส่วนของมวลไอน้ำต่อมวลอากาศแห้ง ซึ่งหาได้จาก สมการ

$$M = M_{v} / M_{air} \tag{3.23}$$

เมื่อ M_{y} เป็นมวลไอน้ำ

M_{air} เป็นมวลอากาศแห้ง

โดยทั่วไปปริมาณไอน้ำในบรรยากาศจะเปลี่ยนแปลงตามความสูงจากพื้นผิวโลก ขึ้นไปสู่บรรยากาศชั้นบน ในงานวิจัยนี้ผู้วิจัยจะทำการคำนวณปริมาณไอน้ำดังกล่าว โดยอาศัยสมการของ Pierrehumbert (1972)

$$w = \int_{p_0}^0 \left(\frac{M}{g}\right) dp \tag{3.24}$$

เมื่อ w เป็นปริมาณไอน้ำในบรรยากาศ [cm]

M เป็นmixing ratio ที่ความคัน P

P เป็นความคันบรรยากาศที่ความสูงใดๆ [mbar]

 $UNDDR g^{P_0}$ เป็นความคันบรรยากาศที่พื้นผิวโลก [mbar] gเป็นความเร่งเนื่องจากแรงโน้มถ่วงของโลก (980cm/s²)

ในการคำนวณปริมาณไอน้ำในบรรยากาศ ผู้วิจัยได้แบ่งชั้นบรรยากาศออกเป็นชั้น ย่อยๆ ตามก่ากวามดันบรรยากาศที่บันทึกได้เป็นช่วงๆ จาก radiosonde และทำการ แปลงสมการ (3.24) ให้อยู่ในรูปของสมการ

$$w = \left[\left(P_0 - P_1 \right) M_1 + \left(P_1 - P_2 \right) M_2 + \left(P_2 - P_3 \right) M_3 + \dots + \left(P_n - P_{n+1} \right) M_{n+1} \right] / g$$
(3.25)

เมื่อ P_i เป็นความคันบรรยากาศชั้นที่ i โดยที่ i =1,2,3,...,n M_i เป็น mixing ratio ของบรรยากาศชั้นที่ i

ผลของข้อมูลปริมาณไอน้ำ (w) ที่คำนวณได้จากข้อมูลตรวจอากาศชั้นบน ในช่วง ปี 2004 – 2005 จะแสดงในตารางที่ A.8 - A.9 ของภาคผนวก ข.

 ผู้วิจัยจะนำค่าความลึกเชิงแสงของฝุ่นละอองที่หาได้ในช่วง 1 ชั่วโมง มาหาค่าเฉลี่ยราย ชั่วโมง โดยทำเหมือนกันกับทุกความยาวคลื่น แล้วนำค่าเฉลี่ยดังกล่าวมาเขียนกราฟ

กับความยาวกลิ่น คังรูปที่ 3.46

รูปที่ 3.46 แสดงความสัมพันธ์ระหว่างความลึกเชิงแสงของฝุ่นละออง กับความยาวคลื่นที่เวลาต่างๆ ในรอบวัน

จากนั้นจะทำการ interpolate ให้ได้ค่าความลึกเชิงแสงที่ความยาวคลื่น 550 นาโน เมตร ของทุกชั่วโมง

รูปที่ 3.47 แสดงการเปลี่ยนแปลงระหว่างความลึกเชิงแสงของฝุ่นละออง ที่ความยาวกลื่น 550 นาโนเมตรในรอบวัน

4 อย่างด้วยกันคือ

- 0 หมายถึง บรรยากาศปราศจากฝุ่นละออง (No aerosol)
- 1 หมายถึง ฝุ่นละอองแบบ continental
- 2 หมายถึง ฝุ่นละอองแบบ maritime
- 3 หมายถึง ฝุ่นละอองแบบ urban

3.2.2 ข้อมูลความเข้มรังสีควงอาทิตย์

ในการจำแนกชนิดของฝุ่นละออง จำเป็นต้องนำข้อมูลความเข้มรังสีดวงอาทิตย์ที่ได้จาก การวัดมาเปรียบเทียบกับผลการคำนวณจากแบบจำลองการถ่ายเทรังสี แต่เนื่องจากสถานีวัดทั้ง 3 แห่งมีการวัดรังสีรวมอยู่แล้ว ผู้วิจัยจึงนำข้อมูลรังสีรวมจากทั้ง 3 สถานีมาใช้งาน โดยคัดเลือก เฉพาะข้อมูลในวันที่ท้องฟ้าปราศจากเมฆ ลักษณะของเครื่องวัดของแต่ละสถานีแสดงในรูปที่ 3.48 – 3.50

รูปที่ 3.48 แสดงเครื่องไพราโนมิเตอร์สำหรับวัดกวามเข้มรังสีรวมของดวงอาทิตย์ ของสถานีกรุงเทพฯ

รูปที่ 3.49 แสดงเครื่องไพราโนมิเตอร์สำหรับวัดความเข้มรังสีรวมของควงอาทิตย์ ของสถานี AIT

รูปที่ 3.50 แสดงเครื่องไพราโนมิเตอร์สำหรับวัดความเข้มรังสีรวมของดวงอาทิตย์ ของสถานีนครปฐม

3.2.3 การวิเคราะห์ข้อมูลและผล ผู้วิจัยได้ดำเนินการกำนวนความเข้มรังสีรวมในวันที่ท้องฟ้าปราศงากเมฆ ณ ตำแหน่ง สถานีวัดทั้ง 3 สถานี โดยใช้ก่าปริมาณโอโซนจากดาวเทียม TOMS/EP ก่าปริมาณไอน้ำจากข้อมูล ตรวจอากาศชั้นบนที่กรมอุตุนิยมวิทยา บางนา และก่าความลึกเชิงแสงที่กวามยาวกลื่น 550 nm ของแต่ละสถานี จากนั้นได้แปรก่าชนิดของฝุ่นละออง แล้วนำก่ากวามเข้มรังสีรวมจากฝุ่นละออง ชนิดต่างๆ มาเขียนกราฟกับก่ารังสีรวมที่ได้จากการวัดของทั้ง 3 สถานี ผลที่ได้แสดงไว้ในรูปที่ 3.51-3.53

รูปที่ 3.51 แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ ชนิดของฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานีนครปฐม

จากกราฟรูปที่ 3.51 พบว่าฝุ่นละอองที่นครปฐมเป็นฝุ่นละอองที่มีการผสมกันระหว่างฝุ่น ละอองแบบ continental และแบบ urban ซึ่งตรงกับความเป็นจริงว่าจังหวัดนครปฐมมีลักษณะ แบบกึ่งชนบท (semi-rural) มีฝุ่นละอองบางส่วนเกิดจากโรงงานอุตสาหกรรม และยวดยานพาหนะ และบางส่วนเกิดจากกิจกรรมทางการเกษตร ในอนาคตอีก 10 - 20 ปีข้างหน้า คาดว่าฝุ่นละอองใน จังหวัดนครปฐมน่าจะเป็นฝุ่นละอองแบบ urban มากขึ้น

รูปที่ 3.52 แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ ชนิดของฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานี AIT

จากกราฟรูปที่ 3.52 พบว่าฝุ่นละอองที่จังหวัดปทุมธานี สามารถเห็นได้อย่างชัดเจนว่าเป็น ฝุ่นละอองแบบ urban ซึ่งตรงกับความเป็นจริงว่าในจังหวัดปทุมธานีได้กลายเป็นเมืองอุตสาหกรรม งนาดใหญ่แล้ว มีโรงงานอุตสาหกรรม และ ยวดยานพาหนะต่างๆ มากมาย จึงทำให้ฝุ่นละอองใน บรรยากาศส่วนใหญ่ เป็นฝุ่นละอองที่เกิดจากการเผาใหม้ในกระบวนการผลิตของโรงงาน อุตสาหกรรมและยวดยานพาหนะต่างๆ

รูปที่ 3.53 แสดงความสัมพันธ์ระหว่างความเข้มรังสีรวมที่ได้จากแบบจำลองโดยใช้ ชนิดของฝุ่นละอองแบบต่างๆ กับค่ารังสีรวมที่ได้จากการวัดที่สถานึกรุงเทพฯ

จากกราฟรูปที่ 3.53 พบว่าฝุ่นละอองที่กรมอุตุนิยมวิทยาบางนา กรุงเทพมหานครเป็นฝุ่น ละอองที่มีการผสมกันระหว่างฝุ่นละอองแบบ continental และแบบ urban ซึ่งตรงกับความเป็น จริงว่าเดิมทีที่ตั้งของเขตบางนาค่อนข้างออกไปทางนอกเมือง แต่ในปัจจุบันที่ตั้งกลายเป็นเมืองที่มี กวามเป็นอุตสาหกรรมขนาดใหญ่ เป็นแหล่งที่ตั้งของท่าเรือขนส่งสินค้าขนาดใหญ่ของประเทศ มี โรงงานอุตสาหกรรม จึงมียวดยานพาหนะต่างๆ ที่ใช้ในการขนส่งสินค้ารวมถึงพาหนะทั่วๆไปอีก มากมาย จึงทำให้ฝุ่นละอองในบรรยากาศส่วนใหญ่เป็นฝุ่นละอองที่เกิดจากสังคมชนบท (นอก เมือง) รวมอยู่กับฝุ่นละอองที่เกิดจากการเผาใหม้ทั้งจากย่านอุตสาหกรรมและกระบวนการขนส่ง ต่างๆ และในอนากตฝุ่นละอองในบริเวณนี้น่าจะเป็นฝุ่นละอองแบบ urban มากขึ้น เช่นเดียวกับที่ จังหวัดนครปฐม

3.3 การคำนวณการลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่นละออง

เนื่องจากฝุ่นละอองจะดูดกลืนและกระเจิงรังสีดวงอาทิตย์มีผลทำให้รังสีดวงอาทิตย์ทั้งรังสี ตรงและรังสีรวมที่ตกกระทบพื้นผิวโลกลดลง และผลดังกล่าวมีความสำคัญต่อสมดุลทางความ ร้อนของบรรยากาศ และการสังเคราะห์แสงของพืช ดังนั้นผู้วิจัยจึงได้ทำการหาปริมาณของรังสีที่ ลดลงดังกล่าวโดยอาศัยวิธีการเปรียบเทียบความเข้มรังสีดวงอาทิตย์กรณีที่ไม่มีฝุ่นละอองกับกรณีมี ฝุ่นละออง สำหรับกรณีไม่มีฝุ่นละอองจะได้จากการกำนวณโดยใช้แบบจำลองการถ่ายเทรังสี 5S และกรณีมีฝุ่นละอองจะอาศัยก่าจากการวัดที่ 3 สถานี ตามรายละเอียดดังนี้

3.3.1 รังสีดวงอาทิตย์ในสภาพท้องฟ้าปราศจากเมฆและฝุ่นละออง

ผู้วิจัยจะใช้แบบจำลองการถ่ายเทรังสี 5S คำนวณความเข้มรังสีควงอาทิตย์ในสภาวะ ท้องฟ้าปราศจากเมฆและฝุ่นละออง ณ คำแหน่งสถานีวัค 3 สถานี โดยใช้ข้อมูลปริมาณโอโซนจาก คาวเทียม TOMS/EP ข้อมูลปริมาณไอน้ำซึ่งหาจากข้อมูลตรวจอากาศชั้นบนที่กรมอุตุนิยมบางนา และข้อมูลความลึกเชิงแสงที่ความยาวคลื่น 550 nm ที่ได้จาก sunphotometer ซึ่งหาไว้แล้วใน หัวข้อ 3.1 จากนั้นจะทำการคำนวณความเข้มรังสีรวมและรังสีตรง แล้วนำมาเปรียบเทียบกับค่า จากการวัด

บาหาวิทสาลีสุสุลาโกกร สังวนสิบสิทธิ์ 3.3.2 ข้อมูลความเข้มรังสีควงอาทิตย์

กรณีข้อมูลรังสีรวมจะใช้ข้อมูลชุดเดียวกับที่ใช้ในการจำแนกชนิดของฝุ่นละออง สำหรับ ข้อมูลรังสีตรง (direct normal solar irradiance) ของสถานีนครปฐม และ AIT จะใช้ข้อมูลจากไพเฮ ริโอมิเตอร์ (phrheliometer) ของสถานี โดยข้อมูลของทั้ง 2 สถานี จะใช้ตั้งแต่ 1 มกราคม ค.ศ. 2004 ถึง 31 ธันวาคม ค.ศ. 2005 ลักษณะของเครื่องวัดของแต่ละสถานีแสดงในรูปที่ 3.54 – 3.55

รูปที่ 3.54 แสดงเครื่องไพเฮริโอมิเตอร์สำหรับวัดความเข้มรังสีรวมของควงอาทิตย์ ของสถานีสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

รูปที่ 3.55 แสดงเครื่องไพเฮริโอมิเตอร์สำหรับวัดกวามเข้มรังสีรวมของดวงอาทิตย์ ของมหาวิทยาลัยศิลปากร จังหวัดนกรปฐม

3.3.3 การทคสอบความละเอียคถูกต้องของแบบจำลอง

ก่อนที่จะนำแบบจำลอง 5S ไปใช้หาความเข้มรังสีควงอาทิตย์ในกรณีที่ท้องฟ้าแบบจำลอง ปราศจากเมฆ ผู้วิจัยได้ทำการตรวจสอบความละเอียคถูกต้องของแบบจำลองโดยการใช้แบบจำลอง ดังกล่าวคำนวณค่าความเข้มรังสีควงอาทิตย์ในกรณีมีฝุ่นละอองทั้งกรณีรังสีตรงและรังสีรวม โดย

การเปรียบเทียบกับการวัด ตัวอย่างผลที่ได้แสดงดังรูปที่ 3.57-3.62 จากรูปผลการทดสอบพบว่าค่า ความเข้มรังสีดวงอาทิตย์ที่คำนวณจากแบบจำลอง 5S ส่วนใหญ่สอดคล้องกับค่าจากการวัด

ในวันที่ 14 เมษายน ค.ศ. 2004

รูปที่ 3.57 แสดงการเปรียบเทียบก่ากวามเข้มรังสีรวมของควงอาทิตย์ที่ได้จากแบบจำลอง 5S ้โดยกำหนดให้ฝุ่นละอองเป็นแบบ continental และจากการการวัดที่นครปฐม ในวันที่ 14 เมษายน ค.ศ. 2004

รูปที่ 3.58 แสดงการเปรียบเทียบก่ากวามเข้มรังสีตรงของควงอาทิตย์ที่ได้จากแบบจำลอง 5S โดยกำหนดให้ฝุ่นละอองเป็นแบบ urban และจากการวัดที่สถาบันเทคโนโลยี-แห่งเอเชียจังหวัดปทุมธานีในวันที่ 3 พฤศจิกายน ค.ศ. 2004

รูปที่ 3.59 แสดงการเปรียบเทียบค่าความเข้มรังสีรวมของควงอาทิตย์ที่ได้จากแบบจำลอง 5S โดยกำหนดให้ฝุ่นละอองเป็นแบบ urban และจากการวัดที่สถาบันเทคโนโลยี-แห่งเอเชีย จังหวัดปทุมธานี ในวันที่ 3 พฤศจิกายน ค.ศ. 2004

3.3.4 วิธีวิเคราะห์ข้อมูลและผล

ถำดับแรกผู้วิจัยจะใช้แบบจำลอง 5S ทำการกำนวณความเข้มรังสีตรงและรังสีรวมในวันที่ ท้องฟ้าปราศจากเมฆ โดยใช้ข้อมูลปริมาณโอโซนจากคาวเทียม TOMS/EP และข้อมูลปริมาณไอน้ำ ซึ่งกำนวณจากข้อมูลตรวจอากาศชั้นบนจากกรมอุตุนิยมวิทยา บางนา และกำหนดให้บรรยากาศไม่ มีฝุ่นละออง (No aerosol) จากนั้นจะกำนวณปริมาณพลังงานแสงอาทิตย์ที่ได้ตลอดวันทั้งรังสีรวม (H_{G,model}) และรังสีตรง (H_{B,model}) ในขณะเดียวกันผู้วิจัยจะจะหาค่าพลังงานแสงอาทิตย์รังสีรวม (H_{G,measl}) และรังสีตรง (H_{B,model}) ซึ่งได้จากการวัดรายวัน ความแตกต่างระหว่างก่าพลังงาน แสงอาทิตย์ที่วัดได้กับที่กำนวณได้จะเป็นผลมาจากฝุ่นละอองในบรรยากาศ สามารถเขียนได้ในรูป ของอัตราส่วนการลดลงของพลังงานแสงอาทิตย์เนื่องจากฝุ่นละออง (aerosol depletion) หลังจาก นั้นจึงกำนวณหาเปอร์เซ็นต์การลดลงของพลังงานแสงอาทิตย์เนื่องจากฝุ่นละออง โดยอาศัยสมการ กรณีรังสีตรง

$$\%D_{B} = \left(\frac{H_{B,mod el} - H_{B,meas}}{H_{B,mod el}}\right) x 100$$
(3.26)

$$\%D_G = \left(\frac{H_{G,mod\ el} - H_{G,meas}}{H_{G,mod\ el}}\right) x\ 100 \tag{3.26}$$

เมื่อ D_B เป็นอัตราส่วนการลดลงของพลังงานแสงอาทิตย์รังสีตรงเนื่องจากฝุ่นละออง D_G เป็นอัตราส่วนการลดลงของพลังงานแสงอาทิตย์รังสีรวมเนื่องจากฝุ่นละออง $H_{B,mod\ el}$ เป็นพลังงานแสงอาทิตย์รังสีตรงที่ได้จากแบบจำลอง 5S (MJ) $H_{B,meas}$ เป็นพลังงานแสงอาทิตย์รังสีตรงที่ได้จากการวัด (MJ) $H_{G,mod\ el}$ เป็นพลังงานแสงอาทิตย์รังสีรวมที่ได้จากแบบจำลอง 5S (MJ) $H_{G,mod\ el}$ เป็นพลังงานแสงอาทิตย์รังสีรวมที่ได้จากการวัด (MJ) $H_{G,meas}$ เป็นพลังงานแสงอาทิตย์รังสีรวมที่ได้จากการวัด (MJ)

หลังจากนั้นผู้วิจัยจึงได้ทำการคำนวณค่า D_B และ D_G ของสถานีนครปฐมและสถานี AIT โดยผลของค่า D_B จะแสดงในรูปที่ 3.60 - รูปที่ 3.61 และสำหรับกรณีของรังสีรวมค่า D_G ของ สถานีนครปฐมและสถานี AIT แสดงในรูปที่ 3.62 - รูปที่ 3.63

ในช่วงปี ค.ศ. 2004 – 2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ 3.61 แสดงอัตราส่วนการลดลงของพลังงานรังสีตรงเนื่องจากฝุ่นละออง $(D_{_B})$ ในช่วงปี ค.ศ. 2004 – 2005 ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

กราฟรูปที่ 3.60 – รูปที่ 3.61 แสดงอัตราส่วนการถดถงของพลังงานแสงอาทิตย์รังสีตรง เนื่องจากฝุ่นละอองในรอบ 2 ปีของทั้ง 3 สถานีในช่วงปี ค.ศ. 2004 – 2005 จากรูปจะพบว่าในกรณี ของรังสีตรงก่า D_B จะแปรก่าอยู่ในช่วง 30% - 60% โดยมีก่าเฉลี่ยรายปีของสถานี AIT และ สถานีนกรปฐมเท่ากับ 40.8 ± 8.6% และ 43.0 ± 8.7% ตามลำดับ

ในช่วงปี ค.ศ. 2004 – 2005 ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

และสำหรับกรณีรังสีรวม ค่า D_G จะแปรค่าอยู่ในช่วง 10% - 30% โดยมีการลดลงเฉลี่ย รายปีของ สถานี AIT และสถานีนครปฐมเท่ากับ 20.7 \pm 3.5% และ 16.1 \pm 3.1% ตามลำดับ

บทที่ 4 บทสรุป

จากความสำคัญของฝุ่นละอองที่มีต่อสภาวะแวดล้อม ผู้วิจัยจึงได้ทำการศึกษาธรรมชาติ ของฝุ่นละอองที่กรุงเทพมหานครและปริมณฑล 2 แห่ง ได้แก่ ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี และมหาวิทยาลัยศิลปากร จังหวัดนครปฐม โดยได้ทำการวัดสเปกตรัมรังสีควง อาทิตย์ด้วย MFR-7 ที่จังหวัดนครปฐม และนำข้อมูลที่ได้จากการวัดสเปกตรัมรังสีดวงอาทิตย์ของ กรมอุตุนิยมวิทยา ที่บางนา และการวัดสเปกตรัมรังสีควงอาทิตย์ของสถาบันเทคโนโลยีแห่งเอเชีย ที่อำเภอคลองหลวง จังหวัดปทุมธานี เป็นข้อมูลจำนวน 2 ปี (ค.ศ. 2004 - ค.ศ. 2005) มาทำการ วิเคราะห์

ในลำดับแรกผู้วิจัยจะกัดเลือกช่วงเวลาที่ท้องฟ้าไม่มีเมฆมาบังควงอาทิตย์ เพื่อนำก่าความ เข้มรังสีควงอาทิตย์ที่กวามยาวคลื่นซึ่งไม่มีการดูคกลืนของไอน้ำและก๊าซต่างๆ มาคำเนินการหาค่า ความลึกเชิงแสงของฝุ่นละอองโดยใช้กฎของ Bouguer แล้วจึงนำก่าความลึกเชิงแสงของฝุ่น ละอองที่ได้มาวิเคราะห์หาการเปลี่ยนแปลงตามฤดูกาลในรอบปี ผลที่ได้พบว่าก่าความลึกเชิงแสง ของฝุ่นละอองทั้ง 3 สถานีมีความสอดกล้องกัน กล่าวกือ ก่าความลึกเชิงแสงของฝุ่นละอองจะมีก่า สูงในช่วงฤดูแล้ง และมีก่าลดลงในช่วงฤดูฝน โดยก่ากวามลึกเชิงแสงของฝุ่นละอองเฉลี่ยรายปีที่ ความยาวกลื่น 500 nm ของสถานีกรุงเทพฯ สถานี AIT และสถานีนครปฐมมีก่าเท่ากับ 0.55 ± 0.31, 0.46 ± 0.26 และ 0.47 ± 0.25 ตามลำดับ

จากก่าความถึกเชิงแสงของฝุ่นละอองที่ได้ ผู้วิจัยได้นำมาคำนวณหาก่าสัมประสิทธิ์ความ ขุ่นมัวของอังสตรอม (β) และ wavelength exponent (α) โดยอาศัยสมการของอังสตรอม ผลการ คำนวณพบว่าก่า β เฉลี่ยทั้งปีของสถานึกรุงเทพฯ สถานี AIT และสถานึนครปฐมมีก่าเท่ากับ 0.19 \pm 0.12, 0.19 \pm 0.09 และ 0.16 \pm 0.08 ตามลำดับ ซึ่งถือว่ามีก่าก่อนข้างสูง และก่า α เฉลี่ยทั้งปี ของสถานึกรุงเทพฯ สถานี AIT และสถานึนครปฐมมีก่าเท่ากับ 1.50 \pm 0.50, 1.46 \pm 0.55 และ 1.54 \pm 0.52 ตามลำดับ โดยขนาดของฝุ่นละอองมีการเปลี่ยนแปลงตามฤดูกาลในรอบปี

หลังจากนั้นผู้วิจัยได้ดำเนินการจำแนกชนิดของฝุ่นละอองของทั้ง 3 สถานี โดยการ เปรียบเทียบก่าความเข้มรังสีรวมซึ่งคำนวณโดยใช้แบบจำลองการถ่ายเทรังสี 5S ที่ฝุ่นละอองแบบ ต่างๆ กับก่าความเข้มรังสีรวมที่ได้จากการวัดของแต่ละสถานี ผลที่ได้พบว่าฝุ่นละอองที่กรม อุตุนิยมวิทยาบางนา ซึ่งอยู่ทางทิศตะวันออกเฉียงใต้ของกรุงเทพมหานกรมีฝุ่นละอองแบบผสม ระหว่างฝุ่นละอองแบบ continental กับแบบ urban สำหรับสถานี AIT มีฝุ่นละอองเป็นแบบ urban และสถานีนครปฐมมีฝุ่นละอองแบบผสมระหว่างฝุ่นละอองแบบ continental กับแบบ urban เช่นเดียวกับสถานีกรุงเทพฯ

สุดท้ายผู้วิจัยได้ดำเนินการหาเปอร์เซ็นต์การลดลงของพลังงานแสงอาทิตย์รังสีตรง และ รังสีรวมเนื่องจากฝุ่นละออง โดยอาศัยการเปรียบเทียบพลังงานแสงอาทิตย์รายวันที่ได้จากการ กำนวณแบบจำลอง 5S โดยสมมติให้ในบรรยากาศไม่มีฝุ่นละออง (No aerosol) จากนั้นนำค่าที่ ได้ไปเปรียบเทียบกับค่าที่วัดได้จริงของแต่ละสถานี ผลการกำนวณพบว่าการลดลงของรังสีตรง รายวันเฉลี่ยต่อปีของวันที่ท้องฟ้าปราศจากเมฆที่สถานี AIT และสถานีนครปฐม มีค่าเท่ากับ 40.8 ± 8.6% และ 43.0 ± 8.7% ตามลำคับ สำหรับกรณีของรังสีรวมรายวันเฉลี่ยต่อปีของวันที่ท้องฟ้า ปราศจากเมฆที่สถานี AIT และสถานีนครปฐม มีค่าเท่ากับ 20.7 ± 3.5% และ 16.1 ± 3.1% ตามลำคับ แต่ของสถานีกรุงเทพฯไม่สามารถสรุปได้เป็นเพราะจำนวนข้อมูลมีน้อยเกินไป การ ลดลงดังกล่าวของสถานีนครปฐม และสถานี AIT ถือว่ามีค่าค่อนข้างสูงซึ่งอาจส่งผลต่อการเปลี่ยน แปลงสภาวะของอากาศในระยะยาว

เนื่องจากข้อมูลที่ทำการศึกษานี้มีช่วงระยะเวลา 2 ปี จึงยากที่จะเห็นแนวโน้มของการ เปลี่ยนแปลงในระยะยาว ผู้วิจัยจึงเสนอแนะให้มีการคำเนินการวัคและวิเคราะห์ข้อมูลต่อเนื่องไป ในอนาคตเพื่อนำมาวิเคราะห์หาแนวโน้มของการเปลี่ยนแปลง นอกจากนี้การวัคสเปกตรัมรังสี ควงอาทิตย์ด้วย sunphotometer สถานีวัคมีจำนวนก่อนข้างจำกัด จึงสมควรที่จะส่งเสริมให้มีการ จัดตั้งสถานีวัคให้กระจายไปยังส่วนต่างๆ ของประเทศ เพื่อนำข้อมูลมาใช้ในการศึกษา และติดตาม การเปลี่ยนแปลงของฝุ่นละอองในประเทศต่อไป

บรรณานุกรม

- สายันต์ โพธิ์เกตุ, "การศึกษาการลดลงของรังสีดวงอาทิตย์เนื่องจากฝุ่นละอองในบรรยากาศ ของประเทศไทย." วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาวิชาฟิสิกส์ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร, 2542.
- วิลาวรรณ์ คำหาญ, "การศึกษาสภาพความขุ่นมัวของบรรยากาศในประเทศไทย." วิทยานิพนธ์ ปริญญามหาบัณฑิต สาขาวิชาฟิสิกส์ บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร, 2543.
- Al-Jamal, K. "Aerosol optical depth in Northern Jordan." Renewable Energy Vol.3, No.6/7 ,627-631 (1993).
- Angstrom, A. "On the atmospheric transmission of sun radiation and dust in the air." Geographic Annal. 2, 156-166 (1929).

Angstrom, A. "The parameters of atmospheric turbidity." **Tellus** 16, 64-75 (1964). Chaiwiwatworakul, P., Chirarattananon, S. "An investigation of atmospheric turbidity of

Thai sky." **Energy and Building** 36, 650-659 (2004).

- Exell, R.H.B. "The water content and turbidity of the atmosphere in Thailand." Solar energy 20, 429-430 (1978).
- Esposito, F., Leone, L., Pavese, G., Restieri, R., Serio, C. "Seasonal variation of aerosols properties in South Italy: a study on aerosol optical depths, Angstrom turbidity parameters and aerosol size distributions." **Atmospheric Environment** 38, 1605-1614 (2004).
- Estelles, V., Utrillas, M.P., Martinez-Lozano, J.A. "Aerosol optical depth and related parameters along 2002 in Valensia, A Mediterranean coastal site." The European Aerosol Conference 2003, S1127-S1128 (2003).
- Fairall, W.C., Davidson, L.K., Schacher, E.G. "An analysis of the surface produce of seasalt aerosol." Tellus 16B, 31-39 (1983).
- Hoppel, W.A., Frick, G.M., Fitzgerald, J.W., Larson, R.E. "Marine boundary layer of G measurement of new particle formation and the effects nonprecopitationg clouds have on aerosol size distribution." Journal Geophysical Research 99, 14443-14459 (1994)
- Iqbal, M., An introduction to solar radiation. Acadamic Press, New York (1983).
- Janjai, S., Kumharn, W. and Laksanaboonsong J. "Determination of Angstrom's turbidity coefficient over Thailand." **Renewable Energy** 28, 1685-1700 (2003).
- Langner, J., Rodhe, H., Crutzen, J. P., Zimmermann, P. "Anthropogenic influence on the distribution of tropospheric sulphate aerosol." Nature 359, 712-715 (1992).
- Louche, A., Maural, M., Simonnot, G., Peri, G., Iqbal, M. "Determination of Angstrom's turbidity coefficient from direct total solar irradiance measurements." Solar energy 38, 89-96 (1987).
- Machler, M. **Parameter of solar irradiation under clear skies**. M.A.Sc. Thesis, University of British Columbia (1983).

Masmoudi, M., Chaabane, M., Medhioub, K., Elleuch, F. "Variability of aerosol optical thickness and atmospheric turbidity in Tunisia." Atmospheric Research 66, 175-188 (2003).

- McClatchey, R.A., and Selby, J.E. "Atmospheric transmittance from 0.25 to 38.5 μ m : computer code LOWTRAN-2.", Air Force Cambridge Research Laboratories, AFCAL-72-0745, Environ. Res. Paper 427 (1927).
- Moon, P. "proposed standard solar radiation curves for engineering use." J. Frankli Inst 230, 583-617 (1940).
- Nunez, M. "Solar energy statistics of Australian capital regions." **Solar Energy** 44, 343-354 (1990).
- Pinker, R.T., Pandithurai, G., Holben, B.N., Keefer, T.O., Goodrich, D. "Aerosol radiation properties in the semiarid Western United States." Atmospheric Research 71, 243-252 (2004).
- Ramachandran, S., Jayaraman, A. "Spectral aerosol optical depths over Bay of Bengal and Chennai: I- measurements." Atmospheric Environment 37, 1941-1949(2003).
- Smith, H.M., and Park, P. "Marine aerosol concentrations and estimated fluxes over the sea." Journal of the Royal Metorological Society 119, 809-824 (1993).

- Tanre^{*}, D., Deroo, C., Duhaut, P., hermam, N., Morcrette, J.J., Perbos, J. and Deschamps,
 P.Y. Simulation of the Satellite Signal in the Solar Spectrum (5S). Technical
 Report, Laboratories d^{*} Optique Atmospherique, Universite^{*} Des Science et
 Technique de Lille, 59655 Villeneuve d^{*} Ascq Cedex, France (1987).
- Valiente, J.A. A Study and parameterization of oceanic aerosol interaction by interpreting spectral solar radiation measurement at Nauru during TOGA-COARE. Ph.D. Thesis, Tasmania University, Australia (1996).
- Warneck, P. In International Geophysics Series. Acadamic Press, New York (1988).
- Watt, A.D. On the nature and distribution of solar radiation. HCP/T2552-01 ,U.S. Department of energy, Washington, D.C., U.S.G.P.O. (1978).
- Woolf, K. D., Bowyer, A. P., Monahan, C. E. "Discriminating between the film drop and jet drops produced by a simulated whitecap." Journal Geophysical Research 92, 5142-5150 (1987)

World Meteorological Organization. WMO operations manual for sampling and analysis techniques for chemical constituents in air and precipitation. WMO No.229 (1971).

- Xin, J., Wang, S., Wang, Y., Yuan, J., Zhang, W., Sun, Y. "Optical properties and size distribution of aerosols over the Tengger Desert in Northern China." Atmospheric Environment 39, 5971-5978 (2005).
- Zakey, A.S., Abdelwahab, M.M., Makar, P.A. "Atmospheric turbidity over Egypt" Atmospheric Environment 38, 1579-1591(2004).

แบบจำลองของ Tanre et al

1. หลักการ

แบบจำลองของ Tanre et al เป็นแบบจำลองที่ใช้สำหรับคำนวณความเข้มรังสีควงอาทิตย์ที่ ตกกระทบพื้นผิวโลกและสะท้อนไปยังควาวเทียมต่างๆ ได้แก่ METOSET, GOES-EAST, GOES-WEST, HRV(SPOT), LANDSAT และ NOAA โดยแบบจำลองคังกล่าวจะพิจารณาเฉพาะในวันที่ ท้องฟ้าปราสจากเมฆ และพิจารณารังสีควงอาทิตย์ตั้งแต่เริ่มเข้าสู่บรรยากาสของโลก ตกกระทบพื้นโลก และสะท้อนผ่านบรรยากาสกลับไปยังอวกาสภายนอกโดยบางส่วนคาวเทียมสามารถรับได้ แบบจำลอง ดังกล่าวจะพิจารณาการดูดกลืนและการกระเจิงรังสีควงอาทิตย์ที่เกิดจากองก์ประกอบต่างๆ ของ บรรยากาส ได้แก่ ไอน้ำ ฝุ่นละออง โอโซน และโมเลกุลของแก๊สต่างๆ นอกจากนี้ยังพิจารณา สัมประสิทธิ์การกระเจิงรังสีควงอาทิตย์ที่เกิดจากพื้นผิวโลกชนิดต่างๆ ด้วย แบบจำลองนี้สามารถ คำนวณก่ารังสีควงอาทิตย์ที่พื้นผิวโลกทั้งรังสีรวมและรังสีกระจาย ในช่วงความยาวกลิ่นต่างๆ ได้ด้วย สมการหลักของแบบจำลองของ Tanre et al ได้แก่ ก่าสัมประสิทธิ์การสะท้อนรังสีควงอาทิตย์ข่อง พื้นผิวโลกและบรรยากาสในสภาพท้องฟ้าแจ่มใส (clear sky earth atmospheric reflectance) ซึ่ง สามารถเพียนได้ดังสมการ

$$\rho'(\theta_s, \theta_v, \Phi_v) = \rho_a(\theta_s, \theta_v, \Phi_v) + \frac{T(\theta_s)}{1 - \langle \rho(M) \rangle S} \left(\rho_c(M) e^{\tau/\mu_v} + \langle \rho(M) \rangle t_d(\theta_v) \right)$$
(1)

- เมื่อ $ho'(heta_s, heta_v,m{\Phi}_v)$ เป็นสัมประสิทธิ์การสะท้อนของพื้นผิวโลกและบรรยากาศที่คาวเทียมรับ ได้ในสภาพท้องฟ้าปราศจากเมฆ
 - $ho_a(heta_s, heta_v, oldsymbol{\sigma}_v)$ เป็นสัมประสิทธิ์การสะท้อนของบรรยากาศ
 - $heta_{s}$ เป็นมุมซึนิธของควงอาทิตย์
 - $heta_{v}$ เป็นมุมซึนิธของคาวเทียม
 - $arPsi_{v}$ เป็นมุมอาซิมุทของคาวเทียม
 - $t_d(heta_v)$ เป็นสัมประสิทธิ์การส่งผ่านรังสึกระจายที่ดาวเทียมรับได้
 - S เป็นสัมประสิทธิ์การสะท้อนที่พื้นผิวโลก
 - $T(heta_s)$ เป็นสัมประสิทธิ์การส่งผ่านรังสีควงอาทิตย์ที่เข้ามายังโลก
 - τ เป็นความลึกเชิงแสงของบรรยากาศ (optical thickness of the atmosphere)

้สัมประสิทธิ์การส่งผ่านรังสีควงอาทิตย์ที่เข้ามายังพื้นโลก สามารถเขียนได้ในรูป

$$T(\theta_s) = e^{-\tau/\mu_s} + t_d(\theta_s)$$
⁽²⁾

ເມື່ອ $\mu_s = \cos \theta_s$ ແລະ $\mu_v = \cos \theta_v$

สำหรับสัมประสิทธิ์การสะท้อนจากสภาพแวคล้อม กำหนคให้ $ho_c(M)$ เป็นสัมประสิทธิ์การสะท้อนจากสภาพแวคล้อมเคียวกัน $\langle
ho(M)
angle$ เป็นสัมประสิทธิ์การสะท้อนเฉลี่ยจากสภาพแวคล้อม

$$\langle \rho(M) \rangle = \frac{1}{t_d(\theta_v)} \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} \rho(x, y) e(x, y, \theta_v) dx dy$$
 (3)

เมื่อ $e(x, y, \theta_v)$ เป็นส่วนของรังสึกระจายที่มีผลต่อ $t_d(\theta_v)$ $\rho(x, y)$ เป็นสัมประสิทธิ์การสะท้อนของจุดที่อยู่ตรงกับคาวเทียม

ในการดูดกลืนและการกระเจิงของฝุ่นละออง จากแบบจำลองของ Tanre´ et al จะแยกฝุ่น ละอองออกเป็น 3 แบบ ดังนี้คือ continental, maritime และ urban โดยจะคำนวณ phase function ที่ phase angle ต่างๆ 83 มุม และที่ก่าความยาวกลื่น 10 ความยาวกลื่น ดังนี้คือ 0.400, 0.515, 0.550, 0.633, 0.694, 0.860, 1.536, 2.250 และ 3.750 ไมโครเมตร จากก่าดังกล่าวข้างต้นทำให้สามารถคำนวณการ ดูดกลืนและการกระเจิงของฝุ่นละอองได้ ซึ่งจะนำผลที่ได้ไปใช้คำนวณสัมประสิทธิ์การส่งผ่านรังสี ดวงอาทิตย์เนื่องจากฝุ่นละออง นอกจากนี้แบบจำลองของ Tanre´ et al ยังสามารถคำนวณ สัมประสิทธิ์การส่งผ่านรังสีดวงอาทิตย์เนื่องจากฝุ่นละอองโดยใช้ข้อมูลทัศนวิสัย หรือใช้ข้อมูลความ ลึกเชิงแสง (aerosol optical depth) ในช่วงความยาวคลื่นต่างๆ ตามต้องการ

เนื่องจากการคำนวณความเข้มรังสีควงอาทิตย์ตามแบบจำลองของ Tanre et al ประกอบค้วย กระบวนการหลายขั้นตอน Tanre et al จึงได้พัฒนาโปรแกรมคอมพิวเตอร์ในภาษา fortran ขึ้นเพื่อใช้ ช่วยในการคำนวณค่าความรังสีควงอาทิตย์ทั้งที่ตกกระทบผิวโลก และส่วนที่สะท้อนขึ้นไปถึงหัววัด ของคาวเทียมโดยผู้ใช้สามารถเลือกตัวแปรและเงื่อนไขต่างๆ ได้ ซึ่งมีเงื่อนไขที่สำคัญและข้อจำกัดดังนี้

 เงื่อนไขเชิงเรขาคณิต (geometrical condition) ได้แก่ มุมเซนิทของควงอาทิตย์ (solar zenith) และมุมเซนิธของคาวเทียม (satellite zenith angle) ต้องไม่มากกว่า 60 องศา แบบจำลองเกี่ยวกับองค์ประกอบของบรรยากาศ (atmospheric model) ไม่มีข้อจำกัด ในการใช้

 แบบจำลองฝุ่นละออง (aerosol model) ค่าทัศนวิสัยที่ใช้ในแบบจำลองนี้ต้อง มากกว่า 5 กิโลเมตร สำหรับค่าที่ต่ำกว่าจะมีผลทำให้การคำนวณค่าผิดพลาด

 4. เงื่อนไขของสเปกตรัม (spectral condition) สัมประสิทธิ์การส่งผ่านของก๊าซ และ ฟังก์ชันการกระเจิงใช้ได้กับความยาวคลื่นในช่วง 0.25 - 4.0 μm แต่ในทางปฏิบัติจะมีผลกระทบ ระหว่างการดูดกลืนและการกระเจิง ถ้าต้องการกำนวณในส่วนของการดูดกลืนให้นำผลกระทบนี้ กลับไปพิจารณาด้วย

5. สัมประสิทธิ์การสะท้อนที่พื้นผิว (ground reflectance (type)) เป็นการพิจารณา ชนิดของพื้นที่เป้าหมายที่มีการสะท้อนออกในแนวเชิงมุมตามแนวรัศมีทรงกลม และการสะท้อนของ สิ่งแวคล้อมที่อยู่รอบๆ

สัมประสิทธิ์การสะท้อนที่พื้นผิว(ground reflectance (spectral variation))
 โดยทั่วไปสเปกตรัมในการสะท้อนถูกกำหนดไว้ 4 แบบ โดยสเปกตรัมช่วงนี้จะต่างจากสเปกตรัมที่เรา
 เลือก กรณีที่เลือกการสะท้อนเป็นชุด 0 ซึ่งจะอยู่นอกระยะนี้เนื่องจากข้อบกพร่องของข้อมูลผู้ใช้ต้อง

บหาวทัลนี้ สียศิลปากร สังวนสิบสิทธิ์

วิธีการใช้โปรแกรมคอมพิวเตอร์คำนวณความเข้มรังสีดวงอาทิตย์จากแบบจำลองของ Tanre et al

ในการใช้โปรแกรมคอมพิวเตอร์คำนวณค่าความเข้มรังสีควงอาทิตย์จากแบบจำลองของ Tanre´et al ได้มีการกำหนดเงื่อนไขที่ให้ผู้ใช้สามารถเลือกใช้ตามต้องการซึ่งมีรายละเอียดดังต่อไปนี้

ผู้ใช้เลือกเงื่อนไขเชิงเรขากณิต (Geometrical condition) ซึ่งมีให้เลือกตั้งแต่ 0 ถึง 7 โดยที่
 ถึง 7 เป็นเงื่อนไขที่กำหนดไว้ในโปรแกรมซึ่งเป็นข้อมูลของดาวเทียมดวงต่างๆ คือ METOSET,
 GOES-EAST, GOES-WEST, NOAA8, NOAA9, SPOT และ LANDSAT ตามลำดับ ในกรณีที่ผู้ใช้
 เลือกเงื่อนไข 0 ผู้ใช้ต้องใส่ข้อมูล มุมเซนิธและ มุมอาซิมุทของดวงอาทิตย์ (solar zenith angle and solar azimuth angle) ตามตำแหน่งที่ต้องการในหน่วยองศา

 เลือกแบบจำลองของบรรยากาศ (atmospheric model) ในโปรแกรมจะมีข้อมูลของ บรรยากาศแบบต่างๆ ให้เลือกจาก 0 ถึง 8 ดังนี้

- 0 ไม่มีการดูดกลื่นโดยก๊าซ
- 1 tropical (เขตร้อนชื้น)
- 2 Midlatitude summer
- 3 Midlatitude winter

4 Subarctic summer

5 Subarctic winter

6 US standard 62

- 7 ผู้ใช้เลือกเองจากการตรวจอากาศชั้นบน 34 ระดับ โดยใส่ข้อมูล ระดับความสูง (altitude) ในหน่วยกิโลเมตร ความดัน (mbar) อุณหภูมิ (K) ความหนาแน่นของ น้ำ (g/m³) ความหนาแน่นของโอโซน (g/m³)
- 8 ผู้ใช้เลือกที่จะใส่ข้อมูลปริมาณไอน้ำ และปริมาณโอโซน

3). เลือกแบบจำลองชนิดของฝุ่นละออง (aerosol model) ผู้ใช้สามารถเลือกชนิดของฝุ่น ละอองได้ดังนี้

- 0 ไม่มีฝุ่นละออง (no aerosol)
- 1 Continental model
- 2 Maritime model
- 3 Urban model

หรือจะกำหนดแบบจำลองเอง โดยใส่จำนวนส่วนผสมขององค์ประกอบในแต่ละชนิดเอง นั่นคือ เลือกแบบจำลอง 4 โดยใส่ข้อมูลเปอร์เซ็นต์ของปริมาตร ของแต่ละองค์ประกอบ เช่น องค์ประกอบที่มีลักษณะเป็นผงฝุ่น ละอองน้ำ องค์ประกอบที่เป็นสารละลายน้ำได้ และพวกเขม่าควัน เมื่อเลือกแบบจำลองแล้วผู้ใช้ใส่ข้อมูลทัศนวิสัย (visibility)

 4). เลือกเงื่อนไขของสเปกตรัม (spectral condition) โดยผู้ใช้สามารถเลือกช่วงสเปกตรัมของ ดาวเทียมแต่ละดวงได้ โดยเลือกเงื่อนไข 2 ถึง 21 ในกรณีที่ผู้ใช้จะกำหนดเองสามารถทำได้โดยเลือก เงื่อนไข -1,0 หรือ 1

5). เลือกสัมประสิทธิ์การสะท้อนที่พื้นผิว (ground reflectance) เราพิจารณาพื้นผิวเป็นแบบ homogenous ซึ่งในโปรแกรมจะมีข้อมูลสัมประสิทธิ์การสะท้อนของพื้นผิวแบบต่างๆ สามารถ เลือกได้ตั้งแต่ 1 ถึง 4 แต่ในกรณีที่เลือก 0 จะเป็นการใช้ก่าสัมประสิทธิ์การสะท้อนที่พื้นผิวคงที่ทุก กวามยาวคลื่นโดยผู้ใช้สามารถใส่ก่าสัมประสิทธิ์การสะท้อนที่พื้นผิวตามต้องการได้

6). เป็นการเลือกที่จะทำการเปรียบเทียบกันระหว่างค่าที่ใช้สมการคณิตศาสตร์ วิเคราะห์จาก สถานการณ์จำลอง กับค่าที่ได้จากการคำนวณจากกระบวนการ Succesive Orders Method โดยมี เงื่อนไขในการเลือกดังนี้

0 ไม่มีการเปรียบเทียบ

1 มีการเปรียบเทียบ

ภาคผนวก ข. บากาวกหาลัตารีเมลดจข้อมูลต่างๆวบเล็บสึกธิ์

														•
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	0.967	0.971	0.982	0.999	1.016	1.029	1.034	1.030	1.018	1.002	0.985	0.973	
	2	0.967	0.971	0.983	0.999	1.016	1.029	1.034	1.030	1.018	1.002	0.984	0.972	
	3	0.967	0.972	0.983	1.000	1.017	1.029	1.034	1.030	1.018	1.001	0.984	0.972	
	4	0.967	0.972	0.984	1.001	1.017	1.029	1.034	1.029	1.017	1.000	0.983	0.971	
	5	0.967	0.972	0.984	1.001	1.018	1.030	1.034	1.029	1.016	1.000	0.983	0.971	
	6	0.967	0.973	0.985	1.002	1.018	1.030	1.034	1.029	1.016	0.999	0.982	0.971	
	7	0.967	0.973	0.985	1.002	1.019	1.030	1.034	1.028	1.015	0.999	0.982	0.970	
	8	0.967	0.973	0.986	1.003	1.019	1.030	1.034	1.028	1.015	0.998	0.981	0.970	
	9	0.967	0.974	0.986	1.003	1.019	1.031	1.034	1.028	1.014	0.997	0.981	0.970	
	10	0.967	0.974	0.987	1.004	1.020	1.031	1.034	1.027	1.014	0.997	0.980	0.970	
	11	0.967	0.974	0.987	1.005	1.020	1.031	1.034	1.027	1.014	0.996	0.980	0.969	
	12	0.967	0.975	0.988	1.005	1.021	1.031	1.033	1.027	1.013	0.996	0.979	0.969	
	13	0.967	0.975	0.988	1.006	1.021	1.032	1.033	1.026	1.012	0.995	0.979	0.969	
Wh	14	0.968	0.975	0.989	1.006	1.022	1.032	1.033	1.026	1.012	0.995	0.979	0.969	0
	15	0.968	0.976	0.989	1.007	1.022	1.032	1.033	1.026	1.011	0.994	0.978	0.969	
	16	0.968	0.976	0.990	1.007	(1.023	1.032	1.033	1.025	1,010	0.993	0.978	0.968	
	17	0.968	0.977	0.990	1.008	1.023	1.032	1.033	1.025	1.010	0.993	0.977	0.968	
	18	0.968	0.977	0.991	1.008	1.023	1.032	1.033	1.024	1.009	0.992	0.977	0.968	
	19	0.968	0.977	0.991	1.009	1.024	1.033	1.033	1.024	1.009	0.992	0.976	0.968	
	20	0.968	0.978	0.992	1.010	1.024	1.033	1.032	1.024	1.008	0.991	0.976	0.968	
	21	0.968	0.978	0.993	1.010	1.025	1.033	1.032	1.023	1.008	0.991	0.976	0.968	
	22	0.969	0.979	0.993	1.011	1.025	1.033	1.032	1.023	1.007	0.990	0.975	0.968	
	23	0.969	0.979	0.994	1.011	1.025	1.033	1.032	1.022	1.007	0.990	0.975	0.967	
	24	0.969	0.980	0.994	1.012	1.026	1.033	1.032	1.022	1.006	0.989	0.975	0.967	
-	25	0.969	0.980	0.995	1.012	1.026	1.033	1.032	1.022	1.006	0.989	0.974	0.967	
	26	0.970	0.981	0.995	1.013	1.026	1.033	1.031	1.021	1.005	0.988	0.974	0.967	
	27	0.970	0.981	0.996	1.013	1.027	1.033	1.031	1.021	1.004	0.987	0.974	0.967	
	28	0.970	0.982	0.997	1.014	1.027	1.034	1.031	1.020	1.004	0.987	0.973	0.967	
	29	0.970	0.982	0.997	1.014	1.028	1.034	1.031	1.020	1.003	0.986	0.973	0.967	
	30	0.971		0.998	1.015	1.028	1.034	1.031	1.019	1.003	0.986	0.973	0.967	
	31	0.971		0.998		1.028		1.030	1.019		0.985		0.967	

ตารางที่ A.1 แสดงแฟลเตอร์สำหรับแก้ผลของระยะทางระหว่างโลกกับดวงอาทิตย์ , S

			(13.82	N,I	00.04	<i>E)</i> บฅ	i.n. 200)4						
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	230	225	247	27 1	277	282	280	274	263	257	254	240	
	2	234	240	244	270	279	281	292	274	276	268	258	241	
	3	230	230	251	272	277	276	276	281	285	287	245	245	
	4	230	240	244	270	279	278	282	268	279	268	259	241	
	5	230	229	249	270	277	269	274	276	276	280	257	239	
	6	221	235	251	267	288	276	273	278	274	268	254	241	
	7	230	245	262	270	277	278	277	273	282	283	253	246	
	8	227	252	249	269	274	279	272	272	278	268	252	241	
	9	230	249	244	273	277	281	277	276	277	273	254	233	
	10	220	240	244	269	274	292	275	272	273	268	253	241	
	11	230	240	245	273	260	284	277	271	269	272	252	243	
	12	235	247	245	273	262	288	279	274	269	273	254	241	
IJŊ	13	230	243	243	273	261	276	277	278	274	266	254	250	
	14	229	236	242	275	274	284	269	278	273	267.72	257	241	ß
	RUIN	230	239	251	273	283	284	52110	283	278	/268	250	248	nã
		233		244	276	(280	286	268	276	269	267	6259	241	ΙU
	17	230	239	243	273	289	276	277	274	271	261	256	246	
	18	225	237	247	276	273	284	272	281	273	263	245	241	
	19	230	238	250	273	276	287	277	278	275	266	240	245	
	20	229	239	251	278	283	279	274	275	275	262	244	241	
	21	230	240	266	273	272	276	277	271	275	263	251	241	
	22	240	240	251	276	286	288	278	279	275	268	245	235	
	23	230	246	251	273	272	288	277	267	272	267	244	242	
	24	231	243	252	275	277	292	283	271	275	264	252	241	
	25	230	237	254	273	270	287	277	275	285	267	258	243	
	26	232	245	257	271	281	286	286	275	275	265	257	232	
	27	230	241	258	273	291	281	277	278	272	271	251	244	
-	28	232	246	256	281	279	285	278	270	275	265	242	241	
	29	230	246	255	273	277	272	277	275	277	265	238	242	
	30	229		256	280	277	277	276	273	275	259	251	234	
	31	230		259		285		283	270		261		233	

ตารางที่ A.2 แสดงค่าปริมาณโอโซนที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

(13.82 °N ,100.04 °E)ปี ค.ศ. 2004

		(13	.82 N	,100.0	4 E	บ ค.ศ. 2	2005							
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	228	237	259	251	278	273	272	-	266	266	247	225	
	2	235	235	259	246	271	275	268	278	-	262	241	233	
	3	233	250	261	266	279	277	271	272	272	269	247	235	
	4	234	233	266	272	260	279	274	280	270	270	244	238	
	5	231	250	273	266	257	274	282	283	269	266	246	228	
	6	231	241	261	249	266	272	281	275	-	265	243	244	
	7	223	250	264	266	255	274	275	274	271	269	244	-	
	8	228	242	264	261	271	267	277	276	271	261	244	224	
	9	231	250	269	266	258	274	285	271	273	263	240	219	
	10	237	244	259	267	262	276	268	271	270	259	240	228	
	11	242	250	270	266	262	274	272	275	268	264	240	221	
	12	245	254	264	257	266	273	265	272	273	265	239	228	
	13	237	250	265	266	269	274	275	272	275	260	246	220	
IJŀ	14	246	253	268	267	265	268	276	275	280	261	232	224	
	R15	259	250	277	266	267	274	283	279	273	261	241	235	16
	16	250	254	276	265	266	275	275	271	258	255	233	233	ЦU
	17	248	250	264	266	279	265	276	272	265	251	240	225	
	18	246	256	265	269	268	269	268	267	265	255	253	238	
	19	239	250	280	266	273	276	270	268	268	254	244	226	
	20	240	258	262	272	270	279	273	266	270	258	264	225	
	21	239	254	262	266	272	264	277	268	268	250	248	233	
	22	244	259	264	271	267	270	273	268	258	261	239	230	
	23	240	254	275	266	270	269	278	277	269	264	238	216	
	24	236	255	267	267	269	270	285	271	266	255	235	228	
	25	237	256	280	276	267	268	283	271	273	252	240	217	
	26	238	258	272	269	265	276	277	273	267	254	244	221	
	27	241	254	269	266	277	276	274	277	273	241	241	219	
-	28	243	258	255	271	274	287	268	273	268	249	231	227	
	29	239		260	279	277	274	260	281	266	250	228	227	
	30	243		259	273	277	272	269	274	269	252	227	232	
	31	245		251		273			264		242		229	

ตารางที่ A.3 แสดงก่าปริมาณโอโซนที่มหาวิทยาลัยศิลปากร จังหวัดนกรปฐม

(13.82 °N ,100.04 °E)ปี ค.ศ. 2005

		(1	4.08 °N	,100.	$62 \ ^{\circ}E$)ป ค.ศ.	2004							
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	232	232	249	266	-	282	272	270	267	261	253	239	
	2	230	-	246	268	283	294	285	-	279	-	253	243	
	3	230	229	249	269	-	285	277	268	280	271	249	245	
	4	228	-	247	279	280	277	279	-	280	-	257	238	
	5	225	234	251	271	-	271	278	273	279	276	253	243	
	6	223	-	255	267	270	292	276	-	275	-	255	-	
	7	220	241	246	267	-	288	281	272	275	273	250	245	
	8	224	-	253	271	279	284	276	-	275	-	252	-	
	9	221	242	243	269	-	280	274	276	273	271	249	231	
	10	218	-	242	270	267	291	270	277	269	-	258	-	
	11	217	238	246	267	-	280	275	282	271	267	251	240	
	12	220	-	246	278	257	280	282	271	277	-	255	-	
UIA	13	-	242	247	274	-	284	276	271	275	267	251	250	
	14	228	-	253	278	274	277	274	274	275	-	253	-	
	RUIL	M	235	253	275	21	282 4	n.	283	274	261	248	245	
	16	229	236	243	276	6274	285		276	270	USC	250	<u> </u>	IU
	17	-	239	244	277	-	281	-	272	273	257	243	242	
	18	225	238	246	278	266	279	271	277	272	-	243	-	
	19	-	240	250	281	281	283	-	274	273	266	239	245	
	20	231	242	249	283	286	290	270	273	273	256	243	-	
	21	-	244	253	-	280	281	-	270	276	263	246	235	
	22	233	246	253	277	288	282	279	277	266	264	247	-	
	23	-	246	258	-	287	281	-	270	275	265	243	240	
	24	226	244	251	280	278	279	279	271	272	264	251	-	
	25	-	239	258	-	277	282	-	271	278	260	248	242	
	26	232	243	257	281	287	282	278	271	262	267	260	-	
	27	-	242	253	-	290	285	-	270	266	270	241	244	
-	28	232	245	252	280	280	283	278	275	270	262	239	-	
	29	-	249	256	-	282	277	-	271	279	263	237	243	
	30	232		256	282	279	279	266	269	-	261	234	238	
	31	-		262		280		-	265		261		236	

ตารางที่ A.4 แสดงค่าปริมาณโอโซนที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

14.08 °N ,100.62 °E)ปี ค.ศ. 2004

		(1	4.08 1	v ,100.	62 E)บ ค.ศ.	2005							
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	245	239	263	252	285	268	268	-	267	-	253	-	
	2	247	238	260	252	274	272	272	280	279	262	253	225	
	3	246	235	261	248	283	270	270	-	280	-	249	225	
	4	246	235	260	264	264	272	272	276	280	268	257	226	
	5	244	233	260	255	268	284	284	-	279	-	253	221	
	6	240	241	264	242	272	276	276	272	275	269	255	236	
	7	236	236	262	260	261	277	277	-	275	-	250	218	
	8	235	240	262	268	270	275	275	271	275	264	252	225	
	9	242	236	269	-	271	281	281	-	273	262	249	216	
	10	248	246	259	268	265	271	271	272	269	259	258	227	
	11	258	-	266	-	271	287	287	-	271	257	251	222	
	12	252	254	266	262	267	277	277	275	277	258	255	230	
	13	248	-	266	-	270	265	265	-	275	262	251	221	
	14	259	256	270	269	272	281	281	279	286	257	253	223	ß
	RUZL	/26/1	CIA	286	IA	275	274	274	5	277	258	248	217	กลี
	16	254	255	276	266	(J ₂₇₂)	273	273	270	260	257)	6250	(J19	ШU
	17	257	-	279	-	281	273	273	-	265	256	243	221	
	18	260	254	269	273	271	274	274	267	264	252	243	229	
	19	251	-	270	-	283	273	273	266	276	252	239	224	
	20	252	262	263	272	284	269	269	266	267	259	243	228	
	21	-	-	269	-	273	270	270	267	274	250	246	218	
	22	256	257	266	277	271	269	269	265	259	260	247	223	
	23	252	-	277	-	269	280	280	275	262	259	243	218	
	24	247	257	267	270	270	273	273	267	267	255	251	220	
	25	248	-	279	-	273	282	282	272	-	256	248	215	
	26	248	255	279	279	272	280	280	269	270	253	260	219	
	27	255	255	273	-	282	269	269	278	-	241	241	219	
	28	254	257	260	280	281	265	265	278	273	251	239	229	
-	29	253		265	-	280	267	267	273	-	248	237	229	
	30	244		266	274	288	267	267	269	269	251	234	230	
	31	241		257		279	269	269	265		241		231	

ตารางที่ A.5 แสดงก่าปริมาณโอโซนที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

(14.08 °N ,100.62 °E)ปี ค.ศ. 2005

		(14	.08 °N	,100.6	$2^{\circ}E$)	ป ค.ศ. 2	2004							
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	233	227	250	267	-	283	273	272	268	260	250	238	
	2	232	-	248	267	282	293	282	-	278	-	255	243	
	3	229	232	252	274	-	280	276	277	280	273	249	243	
	4	228	-	246	271	277	275	277	-	279	-	257	242	
	5	224	235	256	270	-	269	275	278	275	287	257	239	
	6	221	-	253	272	273	287	273	-	271	-	258	-	
	7	220	243	242	270	-	282	281	271	280	278	251	244	
	8	227	-	250	264	273	281	276	271	274	-	256	-	
	9	226	232	237	270	-	278	277	277	278	274	258	232	
	10	221	-	244	273	273	287	277	274	274	-	258	-	
	11	-	258	247	272	-	279	281	284	276	275	258	240	
	12	229	-	244	275	260	292	273	274	272	-	255	-	
	13	-	244	247	275	-	280	-	278	273	270	252	250	
IJŀ	14	232	235	243	273	280	279	279	274	280	-	253	-	
	R15	M	240	251	274-	21	287	ns	287	277	259	252	246	NR
	16	233	241	244	273	276	289	270	275	269	1030	253	GLI	ШU
	17	-	240	247	281	-	289	-	271	271	262	244	244	
	18	229	243	248	279	278	280	273	277	275	-	245	-	
	19	-	241	256	-	273	284	-	277	272	265	238	245	
	20	231	246	254	282	287	285	268	274	271	260	246	-	
	21	-	245	258	-	275	277	-	268	272	260	249	239	
	22	232	246	258	273	288	276	281	276	264	263	248	-	
	23	242	255	25/	-	284	285	-	268	277	265	244	244	
	24	231	249	252	276	280	286	286	272	275	264	248	-	
	25	-	239	257	-	284	288	-	273	283	261	253	244	
	26	233	248	253	274	275	282	288	277	264	267	255	-	
-	27	-	243	255	-	291	286	-	273	267	270	240	241	
	28	234	247	253	278	280	279	279	271	-	264	245	-	
	29	-	248	259	-	287	277	-	275	275	259	236	242	
	30	234		256	284	282	276	272	273	-	254	239	235	
	31	-		259		280			269		262		236	

ตารางที่A.6 แสดงค่าปริมาณโอโซนที่กรมอุตุนิยมวิทยาบางนา จังหวัดกรุงเทพมหานคร

(14.08 °N ,100.62 °E)ปี ค.ศ. 2004

			(14.08	<i>N</i> ,10	0.62	E)11 FI	.ศ. 200	5						
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
	1	233	237	264	251	285	273	272	-	266	-	247	225	
	2	237	239	264	250	275	275	268	278	-	262	241	228	
	3	233	235	266	250	282	277	271	272	270	-	247	227	
	4	241	235	264	263	266	279	274	280	270	270	244	230	
	5	234	237	262	252	264	279	282	283	275	-	246	218	
	6	232	243	261	249	270	275	281	275	271	265	243	236	
	7	223	240	259	259	259	271	275	274	271	-	244	225	
	8	228	240	264	266	272	275	277	271	271	261	240	224	
	9	230	-	274	-	269	-	285	271	273	263	240	219	
	10	239	247	263	268	264	274	268	273	270	259	240	228	
	11	240	-	271	-	261	-	272	275	268	255	240	221	
	12	250	256	267	265	272	273	265	272	272	259	239	228	
	13	239	-	269	-	269	-	275	272	277	256	-	220	
117/	14	251	258	274	269	267	268	276	275	280	253	232	224	
	RM	/247	CIA	279	าัล	273	276	<u></u>	279	273	/254	<u>_</u>	2277	V
	16	249		279	271	. (270 (271	275	277	267	252	(₂₃₃)		Ļ
	17	249	-	272	-	273	265	275	272	265	251	-	225	
	18	249	257	270	275	269	268	267	270	265	255	234	230	
	19	245	-	273	-	275	-	270	269	268	254	-	226	
	20	244	262	266	269	267	270	273	266	270	258	240	225	
	21	238	-	264	-	269	269	277	269	270	250	-	226	
	22	244	258	268	275	271	268	282	267	266	257	239	226	
	23	241	-	273	-	270	265	2778	274	269	259	-	216	
	24	235	258	277	270	265	268	285	271	269	249	235	228	
	25	236	-	279	-	268	267	283	273	266	250	-	217	
	26	241	259	272	276	276	270	277	272	267	250	244	221	
	27	241	256	269	-	281	274	274	277	273	241	-	219	
-	28	248	258	261	277	279	276	270	276	272	249	248	227	
	29	241		268	276	-	281	272	277	266	250	-	227	
	30	245		262	276	278	-	269	271	269	252	227	232	
	31	240		254		274		275	268		242		229	

ตารางที่ A.7 แสดงค่าปริมาณโอโซนที่กรมอุตุนิยมวิทยาบางนา จังหวัดกรุงเทพมหานคร

(14.08 °N ,100.62 °E)ปี ค.ศ. 2005

		บาง	งนา จง	หวดกรุ	ุ่งเทพม	หานคร	(14.08	°N ,10	0.62 °E	ี่)ป ค.	ศ. 2004	4	
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	1	1.473	3.079	1.501	2.689	3.490	3.083	3.743	2.317	4.474	3.966	1.418	1.450
	2	1.654	2.814	1.845	2.235	3.980	3.294	3.732	0.033	3.939	3.800	2.478	1.975
	3	1.896	2.771	1.101	2.989	3.945	3.664	3.552	3.867	3.950	3.909	1.949	1.435
	4	1.870	3.241	1.282	2.981	3.527	3.642	3.438	1.344	3.931	3.160	1.714	1.056
	5	1.598	2.937	1.955	2.782	4.491	4.153	3.624	1.516	3.750	3.784	1.726	0.977
	6	1.745	2.929	2.733	3.493	4.509	3.850	3.541	4.017	4.007	3.396	2.172	0.912
	7	1.561	3.720	2.936	3.909	4.118	3.621	3.204	4.061	3.930	2.799	0.962	0.994
	8	1.865	3.659	1.605	2.225	4.513	4.229	3.275	2.516	3.363	2.504	1.365	1.763
	9	2.230	2.582	2.681	-	2.163	4.280	3.434	4.197	4.159	2.878	1.960	2.160
	10	3.060	2.066	1.744	3.171	3.518	3.879	3.737	4.042	3.461	2.966	1.909	1.911
	11	3.526	1.287	2.500	3.397	4.016	4.477	4.104	2.294	3.267	3.240	2.304	1.806
	12	4.127	0.877	2.325	2.314	3.823	4.255	3.637	3.521	3.769	3.837	2.244	1.756
	13	3.057	0.811	2.264	1.826	3.986	3.758	1.275	-	4.147	3.149	1.592	1.128
W1A	14	2.371	0.508	1.598	1.457	3.867	4,247	3.884	3.100	3.740	2.359	_	0.934
	Rain	2.804	1.059	3.033	1.857	21	4.253	2.903	3.631	3.993	2.407	27	1.056
	16	2.373	<u> </u>		1.310	3.504	3.627	3.162	4.246	3.861	2.852	<u>GL</u> U	1.515
	17	2.640	1.047	-	1.291	3.779	4.388	3.207	3.850	3.950	2.411	-	0.119
	18	2.475	0.941	1.542	2.573	3.506	3.218	3.758	3.989	3.780	1.379	-	0.486
	19	1.937	2.495	2.956	2.862	2.690	4.382	3.341	4.112	3.530	2.144	-	-
	20	-	1.863	1.719	2.231	4.500	3.629	3.781	4.488	3.959	1.557	-	-
	21	1.512	1.591	3.404	3.405	2.358	3.226	3.966	3.794	3.814	1.297	-	-
	22	3.030	1.485	3.282	3.881	3.977	2.997	3.991	4.106	3.725	2.269	-	-
	23	2.527	1.161	3.025	2.594	3.049	2.687	4.009	3.783	3.603	1.893	-	-
	24	1.402	1.369	2.301	2.724	2.807	3.260	3.944	3.351	2.235	1.813	-	-
	25	1.185	1.219	1.670	3.633	3.421	3.487	4.035	3.236	2.956	2.815	-	-
	26	1.415	-	1.087	2.899	3.610	3.025	3.874	3.512	3.435	1.592	-	-
	27	1.375	1.111	1.334	3.219	3.725	3.605	4.011	3.722	2.789	1.746	-	-
-	28	1.759	0.707	1.905	3.065	3.314	3.425	4.286	3.455	2.446	2.117	-	0.034
	29	2.238	0.897	2.823	3.659	2.863	2.696	3.519	3.877	2.120	3.068	-	0.174
	30	2.960		2.025	2.744	3.735	2.649	1.800	4.407	3.756	2.213	-	1.046
	31	3.042		2.297		3.967		3.781	2.293		1.668		

ตารางที่A.8 แสดงค่าปริมาณไอน้ำในบรรยากาศจากข้อมูลตรวจอากาศชั้นบนที่กรมอุตุนิยมวิทยา

างนา จังหวัดกรุงเทพมหานคร(14.08 °N ,100.62 °E)ปี ค.ศ. 2004

		ป	างนา จั	งหวัดกรุ	ึ่งเทพม	หานคร(14.08 °	N ,100	.62 °E)ปี ค.ศ.	. 2005		
	DATE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	1	-	2.212	-	-	3.031	-	3.752	-	-	3.703	2.692	-
	2	-	2.033	-	-	2.361	-	3.964	-	-	3.845	3.476	-
	3	-	-	-	-	2.636	3.800	3.780	-	-	4.253	3.235	-
	4	-	2.317	-	-	2.132	4.110	3.824	-	-	4.000	3.533	-
	5	-	1.197	-	-	3.609	4.250	4.201	-	-	3.905	4.180	-
	6	-	0.947	-	-	2.670	4.040	-	-	-	3.738	3.787	-
	7	-	2.046	-	-	3.288	3.965	3.703	-	-	3.925	3.787	-
	8	-	1.992	-	-	4.235	4.071	4.051	-	-	3.537	3.731	-
	9	-	1.767	-	-	4.137	4.410	3.950	-	-	4.322	-	-
	10	-	2.120	-	-	4.000	3.969	3.593	-	4.299	4.120	-	-
	11	-	3.138	-	-	4.664	3.844	3.267	-	4.189	3.488	-	-
	12	-	1.967	-	-	2.265	3.389	-	-	0.000	4.275	-	-
	13	-	2.316	-	2.761	4.213	3.389	-	-	4.527	3.871	-	-
IJŊ	14	-	3.098	-	3.215	3.922	3.787	-	-	5.412	4.476	-	- 4
		MA	1.781	A£	3.416	4.048	4.118	15	al	\mathbb{N}	4.403	212	
	16		1.210		1.161	4.547	4.448	3.426	GLU		3.327	00	
	17	-	1.425	-	3.245	4.230	-	3.221	-	-	3.933	-	-
	18	-	1.061	-	3.447	-	3.597	3.752	-	-	3.709	-	-
	19	-	1.233	-	3.370	4.276	4.044	1.060	-	-	3.733	-	-
	20	-	1.336	-	1.586	4.098	4.180	3.782	-	-	-	-	-
	21	-	2.115	-	2.782	4.031	4.070	4.126	-	-	3.560	-	-
	22	-	1.897	-	2.854	-	3.706	4.371	-	-	3.768	-	-
	23	-	1.900	-	2.694	3.717	4.253	4.246	-	-	4.043	-	-
	24	-	2.833	-	1.158	3.463	3.981	4.387	-	4.069	4.385	-	-
	25	-	1.543	-	3.082	3.510	4.180	4.059	-	3.927	4.355	-	-
	26	-	1.817	-	3.084	2.942	4.031	4.094	-	3.758	4.041	-	-
	27	-	1.390	-	3.282	3.212	3.929	4.235	-	3.903	3.780	-	-
_	28	-	1.768	-	3.508	3.525	3.720	4.087	-	3.995	3.831	-	-
	29	-		-	2.302	3.567	4.562	4.097	-	3.673	2.067	-	-
	30	-		-	2.927	-	3.807	4.401	-	4.286	2.417	-	-
	31	-		-		4.064			-		2.410		-

ตารางที่ A.9 แสดงค่าปริมาณไอน้ำในบรรยากาศจากข้อมูลตรวจอากาศชั้นบนที่กรมอุตุนิยมวิทยา

ภาคผนวก ค. ภาคมนวก ค. ที่ความยาวคลื่นต่างๆ ของสถานีนครปฐม

		เดอน มกราคม	ม 2004 ของส	ถานนครปฐม			
				AOD			
	DATE	413	500	613	671	864	
	1	0.376	0.403	0.281	0.200	0.155	
	2	0.547	0.539	0.370	0.261	0.196	
	3	0.551	0.537	0.371	0.267	0.203	
	4	0.490	0.491	0.336	0.236	0.178	
	5	0.657	0.634	0.439	0.307	0.228	
	6	0.668	0.650	0.462	0.333	0.256	
	7	0.646	0.619	0.432	0.311	0.239	
	8	0.581	0.571	0.396	0.281	0.214	
	9	0.849	0.810	0.585	0.432	0.334	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13		<u> </u>	-	-	_	
IJħ		MAU	Man	<u> 1AS</u>	<u>a (dod</u>	JANG	m
	16	_	-	-	-	_	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ B.1 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	_	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	<u> </u>	<u> </u>	-	-		
IJħ		MAU	MAU	<u> 1AS</u>		<u>IANG</u>	Íľ
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	0.445	0.483	0.364	0.287	0.232	
	21	0.804	0.800	0.608	0.455	0.361	
	22	0.494	0.518	0.374	0.271	0.216	
	23	-	-	-	-	-	
	24	0.233	0.309	0.224	0.160	0.124	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	

ตารางที่ B.2 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือน กุมภาพันธ์ 2004 ของสถานีนครปฐม

		เมเกต ทุต แบง	J 2004 UUNIN	าเหหนากมีท			
				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	0.643	0.647	0.477	0.358	0.288	
	11	0.808	0.771	0.565	0.426	0.333	
	12	-	-	-	-	-	
	13		-	-	-		
IJM		010.844 0100	0.803	0.586	0.438		IM S
	16	0.726	0.691	0.495	0.365	0.289	
	17	_	-		-		
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	0.686	0.647	0.456	0.330	0.262	
	27	0.768	0.728	0.527	0.397	0.327	
	28	0.815	0.765	0.535	0.387	0.299	
	29	0.455	0.482	0.352	0.274	0.236	
	30	0.596	0.596	0.430	0.318	0.253	
	31	0.703	0.680	0.490	0.366	0.294	

ตารางที่ B.3 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือน มีนาคม 2004 ของสถานีนครปลม

		เดอนเมษายน	2004 ของสถ	านนครบฐม			
				AOD			
	DATE	413	500	613	671	864	
	1	0.960	0.901	0.648	0.475	0.373	
	2	-	-	-	-	-	
	3	0.551	0.567	0.409	0.305	0.244	
	4	0.852	0.821	0.592	0.433	0.333	
	5	0.791	0.754	0.543	0.398	0.309	
	6	0.466	0.485	0.344	0.250	0.206	
	7	0.646	0.631	0.456	0.338	0.279	
	8	0.373	0.420	0.305	0.226	0.195	
	9	0.567	0.548	0.375	0.270	0.208	
	10	0.448	0.500	0.398	0.348	0.330	
	11	0.845	0.792	0.554	0.399	0.312	
	12	0.681	0.639	0.434	0.308	0.242	
	13	0.859	0.787	0.548	0.402	0.331	
1 Th	η^{1}	0.615	0.590	0.411	0.295	0.237	[m
		0.376		0.268	GL 0.188	36 <mark>0.158</mark> 96	
	16	0.537	0.507	0.330	0.222	0.167	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	

ตารางที่ B.4 แสดงก่ากวามถึกเชิงแสงของฝุ่นถะอองที่กวามยาวกลื่นต่างๆ เดือบเมษายน 2004 ของสถาบีบครปฐม

		เผอทุพเโลบเ	ทม 2004 10N	เถเเหหนากจีท	I		
				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-		-	-	_	L /
IJħ		<u>INAC</u>	MAU	<u> 1AIS</u>	ICUS	<u> IAN</u> A	Ma
	16	_	_	-	-		
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	0.088	0.207	0.177	0.162	0.158	
	26	0.024	0.130	0.101	0.091	0.084	
	27	-	-	-	-	-	
	28	0.183	0.232	0.171	0.146	0.124	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ B.5 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

เดือนพฤษภาคม 2004 ของสถานีนครปฐม

		เพอนทย์หาดเ	3 2004 1016	แหหมาบงิท			_
				AOD			
	DATE	413	500	613	671	864	
	1	0.229	0.307	0.242	0.216	0.201	
	2	0.209	0.286	0.239	0.221	0.217	
	3	0.097	0.189	0.153	0.145	0.138	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	0.270	0.369	0.319	0.299	0.302	
	13	-	-	-	-	-	
1.178		INAN	Aan	AAS	ann	Iana	Ima
	16			<u> </u>			
	17	_	-	_	_	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	_	_	_	_	_	
	22	_	-	-	-	_	
	23	-		-	-		
	24		-	-	-	-	
	25		-		_	-	
	26		-		_	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	0.378	0.463	0.424	0.420	0.395	
	30	0.362	0.448	0.416	0.416	0.391	
				1	I		1

ตารางที่ B.6 แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนบิถนายน 2004 ของสถาบีนอรปฐม

				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	-	-	-	-	
IJħ		NAU.	Mau	IAS	AIDU	IANA	ME
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ B.7 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนกรกภาคม 2004 ของสถานีนครุปสม

		SHO BEINTI IIIA	J 2004 UUNIN	าเหน่แงกมือง			
				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	0.182	0.281	0.226	0.199	0.180	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	T	-	-		
IJħ		MAU	Mau	<u> AAS</u>	ATDD1	<u>IANG</u>	ÎM E
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	0.059	0.174	0.135	0.115	0.109	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	0.164	0.256	0.204	0.183	0.168	
	26	0.129	0.223	0.176	0.157	0.142	
	27	-	-	-	-	-	
	28	0.138	0.217	0.174	0.164	0.145	
	29	0.125	0.220	0.180	0.164	0.154	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ B.8 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนสิงหาคม 2004 ของสถานีนครปสม

		เตอนเมอเอ	น 2004 ของถ	เป็นนทวบจูม			
				AOD			
	DATE	413	500	613	671	864	
	1	0.171	0.287	0.244	0.222	0.218	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	0.193	0.310	0.274	0.262	0.252	
	7	0.080	0.174	0.145	0.137	0.129	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	0.151	0.243	0.184	0.149	0.142	
	12	0.254	0.340	0.253	0.200	0.169	
	13	-	- 1	-	-	_	
1172		0.240	0.351	0,306	0.282	0.275	ที่กล
		0.179	-0.271	0.241	G_0.235	0.223	
	16	0.065	0.172	0.140	0.129	0.120	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	0.531	0.510	0.369	0.282	0.219	
	23	0.145	0.215	0.157	0.127	0.116	
	24	0.532	0.530	0.365	0.262	0.205	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	0.725	0.744	0.567	0.418	0.331	
	29	0.717	0.739	0.561	0.416	0.324	
	30	-	-	-	-	-	

ตารางที่ B.9 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือบกับยายบ 2004 ของสถาบีบคราไรม

		ពេកសំពាម។	2004 00100	หหมายที่ท		
				AOD		
	DATE	413	500	613	671	864
	1	0.353	0.423	0.334	0.267	0.223
	2	-	-	-	-	-
	3	-	-	-	-	-
	4	-	-	-	-	-
	5	-	-	-	-	-
	6	-	-	-	-	-
	7	0.542	0.578	0.456	0.360	0.294
	8	-	-	-	-	-
	9	-	-	-	-	-
	10	-	-	-	-	-
	11	-	-	-	-	-
	12	-	-	-	-	-
	13	-	T_	-	-	
IJħ		INACI.	AIGU	<u>IAS</u>	<u> 1991</u>	
	16	0.979	0.969	0.761	0.571	0.461
	17	0.929	0.960	0.778	0.599	0.491
	18	0.558	0.589	0.446	0.322	0.251
	19	0.795	0.814	0.617	0.446	0.349
	20	0.890	0.901	0.695	0.505	0.401
	21	0.687	0.745	0.579	0.429	0.346
	22	0.972	0.997	0.792	0.592	0.477
	23	-	-	-	-	-
	24	0.420	0.477	0.360	0.262	0.206
	25	0.371	0.418	0.317	0.250	0.210
	26	0.784	0.806	0.621	0.455	0.355
	27	0.951	0.958	0.749	0.549	0.439
	28	-	-	-	-	-
	29	0.284	0.354	0.273	0.214	0.177
	30	0.161	0.238	0.179	0.139	0.120
	31	0.335	0.401	0.315	0.250	0.224

ตารางที่ B.10แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนตลากม 2004 ของสถานีนกรปฐม

		เดอทพปแกม	เฮน 2004 ขอ	งสถานหาวบฐา	ม		
				AOD			
	DATE	413	500	613	671	864	
	1	0.146	0.225	0.157	0.110	0.090	
	2	0.479	0.493	0.375	0.296	0.247	
	3	0.248	0.304	0.211	0.145	0.108	
	4	0.385	0.430	0.313	0.224	0.174	
	5	-	-	-	-	-	
	6	0.252	0.324	0.241	0.178	0.143	
	7	0.407	0.447	0.344	0.267	0.226	
	8	0.275	0.324	0.231	0.166	0.126	
	9	0.411	0.444	0.318	0.230	0.173	
	10	0.332	0.373	0.262	0.187	0.148	
	11	0.316	0.348	0.235	0.160	0.116	
	12	0.235	0.278	0.184	0.127	0.093	
	13	0.282	0.317	0.212	0.144	0.107	
IJħ		0.282	0.308	0.155	0.148		IM 5
	16	-	-	-	-	-	
	17	0.246	0.291	0.195	0.137	0.101	
	18	0.143	0.206	0.134	0.089	0.065	
	19	0.308	0.349	0.251	0.184	0.145	
	20	0.319	0.361	0.258	0.186	0.147	
	21	0.416	0.438	0.315	0.227	0.181	
	22	0.418	0.434	0.310	0.221	0.176	
	23	0.466	0.480	0.344	0.246	0.192	
	24	0.534	0.551	0.404	0.294	0.227	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	0.110	0.183	0.116	0.076	0.057	
	28	0.244	0.295	0.215	0.167	0.137	
	29	0.329	0.367	0.263	0.197	0.156	
	30	0.347	0.388	0.284	0.207	0.160	

ตารางที่ B.11แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

เดือนพฤศจิกายน 2004 ของสถานีนครปฐม

		เดือนชั้นวากม	2004 ของสถา	เนินครปฐม			
				AOD			
	DATE	413	500	613	671	864	
	1	0.445	0.477	0.351	0.248	0.191	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13		-	-	-	_	
IJM		hadi	Alau'	IAS (<u> 1991</u>		MS
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	0.705	0.646	0.447	0.305	0.233	
	24	1.038	0.929	0.655	0.447	0.338	
	25	0.873	0.823	0.581	0.397	0.304	
	26	0.553	0.535	0.382	0.270	0.217	
	27	0.471	0.458	0.309	0.209	0.159	
	28	0.359	0.359	0.241	0.162	0.130	
	29	0.325	0.346	0.249	0.183	0.163	
	30	0.394	0.386	0.256	0.169	0.132	
	31	-	-	-	-	-	

ตารางที่ B.12แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

		เผเดษทาเวเนเ	N 2003 JUNN	แทหนาบที่ท			
				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	0.621	0.593	0.417	0.284	0.223	
	5	-	-	-	-	-	
	6	0.369	0.387	0.279	0.196	0.159	
	7	0.314	0.346	0.245	0.165	0.129	
	8	0.692	0.656	0.466	0.326	0.247	
	9	0.572	0.542	0.369	0.243	0.177	
	10	0.560	0.517	0.346	0.229	0.170	
	11	0.814	0.740	0.508	0.341	0.253	
	12	0.664	0.610	0.426	0.302	0.226	
	13	1.378	0.468	0.318	0.805	0.159	
IJħ				0.416	0.648		IM6
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	1.573	0.893	0.696	0.906	0.418	
	20	1.550	1.011	0.708	0.893	0.418	
	21	1.543	1.088	0.793	0.857	0.434	
	22	0.992	0.915	0.675	0.492	0.383	
	23	0.786	0.727	0.520	0.367	0.276	
	24	1.140	1.020	0.724	0.501	0.369	
	25	0.974	0.901	0.668	0.488	0.380	
	26	0.261	0.292	0.189	0.111	0.078	
	27	0.438	0.432	0.295	0.194	0.144	
	28	0.419	0.418	0.288	0.191	0.146	
	29	0.479	0.461	0.308	0.197	0.145	
	30	0.852	0.779	0.545	0.373	0.277	
	31	0.998	0.912	0.653	0.454	0.337	

ตารางที่ B.13แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือบบกราคม 2005 ของสถาบีบครปรม

		ពាក់ពារខ្មែរបារ	2003 001	แแเหนเเงาตู้ง			
				AOD			
	DATE	413	500	613	671	864	
	1	1.178	1.099	0.818	0.587	0.449	
	2	1.001	0.940	0.697	0.502	0.384	
	3	0.728	0.686	0.492	0.346	0.254	
	4	0.551	0.540	0.384	0.268	0.199	
	5	0.258	0.293	0.202	0.135	0.103	
	6	0.241	0.276	0.187	0.121	0.091	
	7	0.433	0.440	0.308	0.211	0.161	
	8	0.560	0.541	0.382	0.267	0.200	
	9	0.767	0.711	0.501	0.351	0.259	
	10	0.870	0.816	0.592	0.423	0.318	
	11	-	-	-	-	-	
	12	1.045	0.767	0.494	0.583	0.256	
	13	1.085	0.755	0.515	0.572	0.274	
n Tha	ก่าฬากิเ	1 0,834 (I	0.600	- 0.398	0.469		ไทกร์
					G	3G0.106) G	
	16	0.504	0.301	0.193	0.344	0.109	
	17	0.445	0.236	0.145	0.268	0.079	
	18	1.246	0.952	0.588	0.560	0.273	
	19	1.258	0.915	0.589	0.682	0.293	
	20	1.060	0.785	0.522	0.562	0.273	
	21	1.534	1.224	0.863	0.798	0.469	
	22	1.297	0.900	0.609	0.642	0.307	
	23	0.894	0.607	0.408	0.492	0.211	
	24	1.034	0.696	0.452	0.515	0.231	
	25	0.798	0.502	0.330	0.391	0.136	
	26	1.042	0.478	0.263	0.369	0.112	
	27	1.574	1.134	0.768	1.076	0.337	
	28	1.374	1.017	0.650	0.603	0.282	

ตารางที่ B.14แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวกลื่นต่างๆ เดือนกมภาพันธ์ 2005 ของสถานีนครปฐม

		เทยนมน เกม 2		រកពរាំ្		
				AOD		
	DATE	413	500	613	671	864
	1	0.684	0.413	0.270	0.420	0.141
	2	0.873	0.526	0.358	0.502	0.186
	3	1.021	0.705	0.492	0.592	0.262
	4	-	-	-	-	-
	5	-	-	-	-	-
	6	0.944	0.596	0.412	0.507	0.221
	7	1.231	0.874	0.600	0.600	0.314
	8	1.495	1.109	0.771	0.762	0.395
	9	1.742	1.368	0.975	0.910	0.503
	10	1.656	1.269	0.865	0.786	0.437
	11	1.179	0.823	0.558	0.653	0.281
	12	1.338	0.917	0.625	0.720	0.322
	13	1.355	0.954	0.640	0.730	0.326
Wh?		had	AIGU	IAS (<u> 1991</u>	
	16	-	-	-	-	-
	17	1.191	0.803	0.563	0.631	0.312
	18	1.403	1.032	0.716	0.859	0.395
	19	-	-	-	-	-
	20	-	-	-	-	-
	21	0.806	0.476	0.309	0.498	0.166
	22	0.838	0.420	0.252	0.489	0.118
	23	1.137	0.729	0.530	0.665	0.308
	24	1.094	0.618	0.438	0.591	0.248
	25	-	-	-	-	-
	26	0.830	0.382	0.261	0.459	0.148
	27	1.348	0.515	0.366	0.668	0.225
	28	0.523	0.264	0.160	0.381	0.081
	29	0.707	0.377	0.260	0.421	0.151
	30	1.383	0.737	0.503	0.626	0.292
	31	0.875	0.596	0.422	0.586	0.251

ตารางที่ B.15แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนมีนาคม 2005 ของสถานีนกรปจม

		เดือนเมษายน 2	2005 ของสถา	นีนครปฐม			
		AOD					
	DATE	413	500	613	671	864	
	1	1.058	0.676	0.453	0.549	0.256	
	2	0.642	0.363	0.230	0.365	0.136	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	1.380	0.433	0.301	0.687	0.169	
	7	1.942	0.499	0.347	0.722	0.185	
	8	2.533	0.592	0.420	0.851	0.235	
	9	1.417	0.472	0.322	0.665	0.179	
	10	2.029	0.345	0.226	0.968	0.131	
	11	1.594	0.383	0.249	0.614	0.134	
	12	1.444	0.358	0.233	0.573	0.117	
	13		- - T	-	-	-	
1112	1914) C	1.210	0.540	0.370	270.58071		MA
			IGLU .		JUVVU	BGLUGL	
	16	1.347	0.422	0.261	0.553	0.130	
	17	1.212	0.466	0.330	0.570	0.200	
	18	-	-	-	-	-	
	19	1.391	0.558	0.397	0.684	0.217	
	20	1.208	0.871	0.611	0.829	0.339	
	21	1.502	0.846	0.595	0.763	0.316	
	22	1.396	0.650	0.430	0.644	0.227	
	23	1.746	0.665	0.442	0.707	0.240	
	24	0.832	0.457	0.311	0.544	0.157	
	25	0.987	0.449	0.300	0.525	0.146	
	26	0.767	0.423	0.256	0.439	0.126	
	27	1.725	0.396	0.289	0.659	0.185	
	28	1.222	0.374	0.256	0.680	0.160	
	29	1.065	0.415	0.282	0.481	0.164	
	30	0.743	0.298	0.183	0.412	0.087	

ตารางที่ B.16แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

		เด่อนพฤษภา	คม 2005 ของ	เสถานั้นครปฐม	l		
				AOD			
	DATE	413	500	613	671	864	
	1	1.096	0.335	0.219	0.484	0.128	
	2	0.756	0.245	0.149	0.413	0.078	
	3	1.483	0.381	0.243	0.620	0.140	
	4	1.110	0.307	0.210	0.515	0.130	
	5	1.907	0.310	0.210	0.976	0.145	
	6	1.680	0.250	0.164	0.680	0.108	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	0.588	0.113	0.086	0.388	0.069	
	10	0.746	0.335	0.263	0.470	0.219	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	0.625	0.232	0.181	0.368	0.142	
11778	n	UT 1.455 (U	0.254	0.185	0.735	0.142	Ĩ M
		0.8H		0.147	0.450	23 G _{0.097} / G	
	16	0.565	0.317	0.232	0.480	0.158	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	0.552	0.171	0.110	0.358	0.088	
	21	-	-	-	-	-	
	22	0.877	0.133	0.099	0.419	0.087	
	23	-	-	-	-	-	
	24	0.369	0.054	0.030	0.314	0.019	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	0.836	0.230	0.196	0.411	0.188	
	29	0.428	0.079	0.045	0.318	0.031	
	30	0.585	0.298	0.204	0.396	0.159	
	31	0.334	0.097	0.059	0.354	0.043	

ตารางที่ B.17แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

4 a 1

	រមាបជនជាជាមា	4 2003 UUNII	ពាកក្ការាំហ			1
AOD						
DATE	413	500	613	671	864	
1	0.246	0.243	0.214	0.347	0.206	
2	-	-	-	-	-	
3	0.786	0.223	0.186	0.422	0.169	
4	1.558	0.297	0.242	0.591	0.201	
5	-	-	-	-	-	
6	0.792	0.407	0.370	0.705	0.348	
7	0.698	0.296	0.260	0.522	0.250	
8	-	-	-	-	-	
9	-	-	-	-	-	
10	-	-	-	-	-	
11	0.726	0.278	0.235	0.436	0.211	
12	0.653	0.229	0.218	0.439	0.197	
13	0.620	0.324	0.283	0.577	0.281	_
			0.320			ĪM
16	-	-	-	-	_	
17	-	-	-	-	-	
18	0.970	0.292	0.245	0.605	0.217	
19	0.780	0.259	0.232	0.511	0.215	
20	-	-	-	-	-	
21	1.179	0.292	0.246	0.700	0.205	
22	-	-	-	-	-	
23	-	-	-	-	-	
24	-	-	-	-	-	
25	-	-	-	-	-	
26	-	-	-	-	-	
27	0.567	0.237	0.211	0.560	0.220	
28	0.926	0.432	0.387	0.603	0.327	
29	-	-	-	-	-	
30	-	-	-	-	-	
	DATE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 16 17 18 19 20 21 18 19 20 21 22 23 24 25 26 27 28 29 30	DATE 413 1 0.246 2 - 3 0.786 4 1.558 5 - 6 0.792 7 0.698 8 - 9 - 10 - 11 0.726 12 0.653 13 0.620 14 0.804 15 - 16 - 17 - 18 0.970 19 0.780 20 - 21 1.179 22 - 23 - 24 - 25 - 26 - 27 0.567 28 0.926 29 - 30 -	DATE 413 500 1 0.246 0.243 2 - - 3 0.786 0.223 4 1.558 0.297 5 - - 6 0.792 0.407 7 0.698 0.296 8 - - 9 - - 10 - - 11 0.726 0.278 12 0.653 0.229 13 0.620 0.324 15 - - 16 - - 17 - - 18 0.970 0.292 19 0.780 0.259 20 - - 21 1.179 0.292 22 - - 23 - - 24 - - 25 - - 26	Notarquined 2003 bootstraturinely AOD DATE 413 500 613 1 0.246 0.243 0.214 2 - - - 3 0.786 0.223 0.186 4 1.558 0.297 0.242 5 - - - 6 0.792 0.407 0.370 7 0.698 0.296 0.260 8 - - - 9 - - - 10 - - - 11 0.726 0.278 0.235 12 0.653 0.229 0.218 13 0.620 0.324 0.283 15 - - - 16 - - - 17 - - - 18 0.970 0.292 0.245 19 0.780 0.259 0.232	AODIANIA DI 2003 OVERTIATITY SIN DATE 413 500 613 671 1 0.246 0.243 0.214 0.347 2 - - - - 3 0.786 0.223 0.186 0.422 4 1.558 0.297 0.242 0.591 5 - - - - 6 0.792 0.407 0.370 0.705 7 0.698 0.296 0.260 0.522 8 - - - - 9 - - - - 10 - - - - 11 0.726 0.278 0.235 0.436 12 0.653 0.229 0.218 0.439 13 0.620 0.324 0.283 0.577 14 0.864 0.320 0.488 0.57 15 0.621 0.320 0.488	ADDITION INCLINE AOD DATE 413 500 613 671 864 1 0.246 0.243 0.214 0.347 0.206 2 3 0.766 0.223 0.186 0.422 0.169 4 1.558 0.207 0.242 0.591 0.201 5 6 0.792 0.407 0.370 0.705 0.348 7 0.698 0.296 0.260 0.522 0.250 8 9 10 0.726 0.278 0.235 0.436 0.211 11 0.726 0.232 0.6489 0.970 0.281 14 0.669 0.630 0.432 0.6489 0.211

ตารางที่ B.18แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนบิถนายน 2005 ของสถาบีนอรปฐม
	DATE	412	500	AOD	(71	964				
	DATE	413	500	613	6/1	864				
	1	-	-	-	-	-				
	2	-	-	-	-	-				
	3	-	-	-	-	-				
	4	-	-	-	-	-				
	5	-	-	-	-	-				
	6	-	-	-	-	-				
	7	-	-	-	-	-	-			
	8	-	-	-	-	-				
	9	-	-	-	-	-				
	10	-	-	-	-	-				
	11	-	-	-	-	-				
	12	-	-	-	-	-				
	13		- - -	-	-	-				
IJM		$\mathbf{h}_{0.366}$					MS			
	16	0.302	0.230	0.151	0.293	0.104				
	17	0.357	0.272	0.184	0.298	0.137				
	18	0.306	0.263	0.190	0.267	0.146				
	19	0.239	0.213	0.173	0.279	0.169				
	20	-	-	-	-	-				
	21	-	-	-	-	-				
	22	-	-	-	-	-				
	23	-	-	-	-	-				
	24	-	-	-	-	-				
	25	-	-	-	-	-				
	26	-	-	-	-	-				
	27	-	-	-	-	-				
	28	0.396	0.341	0.277	0.574	0.259				
	29	0.067	0.078	0.052	0.180	0.041				
	30	-	-	-	-	-				
	31	-	-	-	-	-				

ตารางที่ B.19แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ <u>ل</u>

เองสอาบีเ ดรงโร 2005

		เดอนสงหาคม	2005 ของสถา	านนครบฐม			
				AOD			
	DATE	413	500	613	671	864	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	0.327	0.370	0.283	0.468	0.221	
	8	0.388	0.193	0.127	0.250	0.121	
	9	-	-	-	-	-	
	10	0.273	0.338	0.218	0.347	0.188	
	11	0.391	0.188	0.125	0.219	0.104	
	12	-	-	-	-	-	
	13		-	-	-	-	
Wh		had	AIGU	IAS (UCUB		MS
	16	0.251	0.364	0.261	0.317	0.224	
	17	-	-	-	-	-	
	18	0.318	0.199	0.131	0.277	0.104	
	19	0.363	0.331	0.274	0.397	0.233	
	20	0.510	0.414	0.306	0.363	0.242	
	21	0.506	0.392	0.308	0.416	0.281	
	22	-	-	-	-	-	
	23	0.248	0.210	0.141	0.231	0.109	
	24	0.253	0.178	0.109	0.251	0.083	
	25	0.346	0.262	0.181	0.300	0.147	
	26	0.258	0.218	0.149	0.227	0.111	
	27	0.352	0.264	0.168	0.279	0.112	
	28	0.491	0.361	0.241	0.294	0.173	
	29	0.270	0.225	0.156	0.219	0.111	
	30	0.354	0.266	0.175	0.355	0.136	
	31	0.363	0.246	0.169	0.289	0.144	

ตารางที่ B.20แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ 4 9

رمحواج

		AOD							
	DATE	413	500	613	671	864			
	1	-	-	-	-	-			
	2	-	-	-	-	-			
	3	-	-	-	-	-			
	4	-	-	-	-	-			
	5	0.316	0.215	0.147	0.326	0.121			
	6	0.186	0.089	0.044	0.189	0.030			
	7	-	-	-	-	-			
	8	-	-	-	-	-			
	9	-	-	-	-	-			
	10	-	-	-	-	-			
	11	0.195	0.153	0.112	0.300	0.092			
	12	0.295	0.217	0.143	0.251	0.112			
	13	- 2-1	<u> </u>	-	-				
1 Th	14	un paci		NAS	2001		1MA		
	15	0.136	0.077	0.055	0.168	0.069			
	16	0.243	0.130	0.062	0.330	0.049			
	17	0.209	0.118	0.067	0.185	0.057			
	18	0.300	0.176	0.103	0.231	0.097			
	19	-	-	-	-	-			
	20	-	-	-	-	-			
	21	-	-	-	-	-			
	22	0.379	0.256	0.157	0.327	0.118			
	23	0.157	0.143	0.100	0.180	0.079			
	24	0.217	0.145	0.075	0.192	0.055			
	25	0.159	0.104	0.063	0.237	0.052			
	26	-	-	-	-	-			
	27	0.345	0.184	0.131	0.243	0.111			
-	28	-	-	-	-	-			
	29	-	-	-	-	-			
	30	-	-	-	-	-			

ตารางที่ B.21แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนกันยายน 2005 ของสถานีนครปฐม

	เคอนตุลาคม 2005 ของสถานนครปฐม								
				AOD					
	DATE	413	500	613	671	864			
	1	-	-	-	-	-			
	2	0.365	0.286	0.166	0.203	0.109			
	3	0.255	0.223	0.145	0.399	0.091			
	4	-	-	-	-	-			
	5	-	-	-	-	-			
	6	-	-	-	-	-			
	7	-	-	-	-	-			
	8	-	-	-	-	-			
	9	-	-	-	-	-			
	10	-	-	-	-	-			
	11	-	-	-	-	-			
	12	-	-	-	-	-			
	13		- [-	-	_			
IJħ		MAU	Man	<u> 1AS</u>	ADDI	JANG	IM 5		
	16	-	-	-	-	-			
	17	1.145	0.437	0.215	0.265	0.109			
	18	0.821	0.697	0.407	0.540	0.191			
	19	0.840	0.699	0.521	0.574	0.330			
	20	0.343	0.437	0.294	0.358	0.189			
	21	0.371	0.360	0.217	0.368	0.126			
	22	-	-	-	-	-			
	23	-	-	-	-	-			
	24	-	-	-	-	-			
	25	-	-	-	-	-			
	26	-	-	-	-	-			
	27	0.819	0.475	0.289	0.575	0.210			
	28	0.602	0.377	0.240	0.514	0.161			
	29	0.637	0.521	0.387	0.464	0.286			
	30	0.386	0.285	0.167	0.282	0.094			
	31	-	-	-	-	-			

ตารางที่ B.22แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

		เดอนพฤสจกาย	ยน 2005 ของส	สถานนครปฐม				
	AOD							
	DATE	413	500	613	671	864		
	1	-	-	-	-	-		
	2	0.473	0.391	0.287	0.354	0.189		
	3	0.561	0.433	0.300	0.371	0.201		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	0.680	0.371	0.217	0.389	0.149		
	7	0.814	0.403	0.244	0.410	0.161		
	8	-	-	-	-	-		
	9	0.662	0.462	0.301	0.445	0.189		
	10	0.316	0.183	0.106	0.283	0.074		
	11	0.173	0.108	0.053	0.218	0.026		
	12	0.335	0.234	0.134	0.287	0.077		
	13	0.333	0.253	0.137	0.266	0.060		
Wh?		<u> 0.465 C</u>					MS	
	16	-	-	-	-	-		
	17	-	-	-	-	-		
	18	-	-	-	-	-		
	19	0.543	0.410	0.303	0.471	0.208		
	20	0.568	0.411	0.270	0.373	0.164		
	21	0.459	0.351	0.229	0.299	0.119		
	22	0.638	0.506	0.353	0.444	0.209		
	23	0.700	0.579	0.380	0.359	0.217		
	24	0.489	0.409	0.233	0.267	0.098		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	0.652	0.529	0.369	0.461	0.210		
	28	0.609	0.513	0.356	0.372	0.217		
	29	0.491	0.380	0.260	0.388	0.163		
	30	0.607	0.484	0.338	0.454	0.230		

ตารางที่ B.23แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ งลิง a 4 . 1.

		เดอนธนวาคม	2005 ของสถา	เนนครบฐม			
				AOD			
	DATE	413	500	613	671	864	
	1	0.469	0.306	0.194	0.279	0.110	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	0.483	0.362	0.233	0.339	0.139	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	0.222	0.255	0.180	0.130	0.105	
	9	0.296	0.317	0.227	0.165	0.131	
	10	0.129	0.180	0.116	0.074	0.059	
	11	0.171	0.224	0.163	0.118	0.102	
	12	-	-	-	-	-	
	13	0.306	0.346	0.268	0.211	0.182	3
N TN89	half		0.258	0.188	0.138	0.114	mã
	15 [[()])][(G-[(O)]					ЦЦШ
	16	-	-	-	-	-	
	17	0.374	0.395	0.283	0.201	0.162	
	18	0.455	0.474	0.347	0.246	0.200	
	19	0.434	0.444	0.316	0.215	0.172	
	20	0.373	0.393	0.278	0.194	0.157	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	0.767	0.726	0.548	0.415	0.337	
	24	0.529	0.514	0.384	0.298	0.244	
	25	0.676	0.647	0.473	0.346	0.271	
	26	0.374	0.395	0.288	0.212	0.168	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	0.195	0.232	0.154	0.101	0.080	
	30	0.233	0.260	0.176	0.120	0.096	
	31	0.190	0.225	0.154	0.106	0.089	

ตารางที่ B.24แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ ě 석 a

ภาคผนวก ง. ปากว่าตารางแสดงคำความลึกเชิงแสงของฝุ่นละออง ที่ความยาวคลื่นต่างๆ ของสถานี AIT

		เดือน มกราคม 2	2004 ของสถานี้ A	IT		
			AO	D		
	DATE	368	500	675	778	
	1	0.576	0.283	0.144	0.092	
	2	0.759	0.392	0.210	0.144	
	3	0.547	0.266	0.136	0.091	
	4	0.739	0.388	0.207	0.142	
	5	0.775	0.426	0.236	0.162	
	6	0.971	0.549	0.312	0.226	
	7	0.783	0.417	0.225	0.154	
	8	0.951	0.536	0.304	0.220	
	9	0.880	0.493	0.276	0.191	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13	0.647	0.390	0.253	0.204	ß
n TINSC	1944 1947	0.639	70 ^{10.335} 09	0.180577	n ^{0.122} n	17ms
				0.659	0.490	JGLIIU
	16	-	-	-	-	
	17	-	-	-	-	
	18	0.561	0.286	0.159	0.112	
	19	0.733	0.406	0.232	0.165	
	20	0.810	0.468	0.271	0.198	
	21	1.105	0.607	0.320	0.212	
	22	1.427	0.914	0.554	0.401	
	23	1.316	0.739	0.402	0.276	
	24	1.156	0.690	0.398	0.279	
	25	0.859	0.462	0.255	0.175	
	26	0.887	0.459	0.234	0.151	
	27	0.976	0.520	0.273	0.180	
	28	1.338	0.758	0.398	0.265	
	29	1.376	0.827	0.463	0.323	
	30	-	-	-	-	
	31	1.175	0.782	0.508	0.405	

ตารางที่ C.1 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

			2 2001 0018			
	DATE	368	500	675	778	
	1	0.892	0.527	0.307	0.225	
	2	0.878	0.516	0.295	0.212	
	3	0.753	0.434	0.267	0.202	
	4	0.566	0.302	0.172	0.125	
	5	0.397	0.206	0.120	0.090	
	6	0.524	0.281	0.159	0.095	
	7	-	-	-	-	
	8	0.376	0.173	0.088	0.055	
	9	0.654	0.337	0.178	0.118	
	10	0.965	0.544	0.301	0.209	
	11	0.664	0.333	0.171	0.105	
	12	0.729	0.390	0.209	0.132	
	13	0.912	0.547	0.312	0.213	
11112	14	0.849	0.499	0.282	0.188	12/112/1775
	15	0.999	0.592	0.337	0.233	
	16	1.205	0.746	0.436	0.308	
	17	1.242	0.790	0.473	0.339	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	0.879	0.559	0.355	0.266	
	24	0.521	0.255	0.130	0.073	
	25	0.661	0.362	0.201	0.127	
	26	0.650	0.349	0.196	0.138	
	27	0.580	0.311	0.177	0.123	
	28	1.015	0.598	0.352	0.251	
	29	1.376	0.827	0.463	0.323	

ตารางที่ C.2 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือน กมภาพันธ์ 2004 ของสถานี AIT

	เข้านั้น 6.5 ะะ	1อน มีนาคม 2004	1 ของสถานี A	AT		
			AOD)		
	DATE	368	500	675	778	
	1	1.010	0.574	0.320	0.226	
	2	0.822	0.442	0.238	0.159	
	3	1.472	0.857	0.463	0.312	
	4	1.311	0.838	0.508	0.375	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13		-	-	-	
UM				<u> 0</u> 572		auains
	16	1.156	0.680	0.384	0.271	
	17	0.839	0.480	0.287	0.216	
	18	1.220	0.730	0.431	0.324	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	0.703	0.365	0.197	0.128	
	23	1.100	0.642	0.374	0.270	
	24	0.825	0.454	0.256	0.173	
	25	1.107	0.622	0.340	0.229	
	26	0.974	0.557	0.317	0.216	
	27	0.917	0.527	0.311	0.230	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.3 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	l	ดือนเมษายน 20)04 ของสถานี	AIT		
	DATE	368	500	675	778	
	1	0.950	0.558	0.329	0.241	
	2	0.978	0.581	0.347	0.248	
	3	0.899	0.534	0.323	0.232	
	4	1.515	0.966	0.582	0.428	
	5	1.250	0.771	0.462	0.341	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	1.138	0.645	0.361	0.249	
	13	1,191	0.668	0.377	0.265	
717786	n nn ci		0.644	0.366	(] (0.254] [ลิฑโสโหก์ส
		0.685	0.360	<u> </u>	0.136	
	16	0.880	0.457	0.245	0.162	
	17	0.583	0.291	0.165	0.105	
	18	1.509	0.845	0.488	0.356	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	1.012	0.601	0.359	0.259	
	24	0.893	0.527	0.333	0.259	
	25	0.936	0.603	0.432	0.356	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	0.682	0.383	0.238	0.155	

ตารางที่ C.4 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	Į	ดือนเพฤษภาคม	2004 ของสถานี	AIT		
			A)D		
	DATE	368	500	675	778	
	1	1.065	0.660	0.446	0.358	
	2	0.559	0.317	0.206	0.140	
	3	-	-	-	-	
	4	1.007	0.617	0.409	0.323	
	5	-	-	-	-	
	6	0.381	0.196	0.125	0.091	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	0.571	0.312	0.206	0.160	
	11	0.364	0.221	0.187	0.154	
	12	0.263	0.145	0.127	0.095	
	13	0.479	0.306	0.260	0.216	
Wh?		0.563	0.406	0.373	0.338	IAMS
	16	-	-	-	-	
	17	-	-	-	-	
	18	0.432	0.262	0.213	0.184	
	19	0.423	0.233	0.188	0.164	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	0.412	0.234	0.187	0.146	
	24	0.436	0.269	0.235	0.201	
	25	-	-	-	-	
	26	-	-	-	-	
	27	0.432	0.218	0.142	0.100	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.5 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	l	ดือนมิถุนายน 2	004 ของสถาเ้	l AIT		
			AC)D		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13			-	-	
TTA	1914) CI	NARI	1271	AS Z	MANIE	371731775
		IGLUI		<u>IIV</u> GL		
	16	-	-	-	-	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	

ตารางที่ C.6 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	เดี	อนกรกฎาคม 20	04 ของสถานี้.	AIT		
			A)D		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13		-	-	-	
UM) 14 C 1			<u> 15 aí</u>		UAMS
	16	-	-	-	-	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.7 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	Į	ดือนสิงหาคม 2	004 ของสถานี้	Ì AIT		
			AC)D		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13		-	-	-	
IJM		1991	<u>Iann</u>	AS G		JUÂMÔ
	16	-	-	-	-	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	0.346	0.205	0.248	0.102	
	24	-	-	-	-	
	25	0.407	0.270	0.306	0.166	
	26	0.472	0.301	0.310	0.157	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.8 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

		เดือนกันยายน 20	04 ของสถานี 4	AIT		
			AC)D		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13			-	-	
JJA .				<u>AS - AI</u>		UAMS
	16	0.270	0.163	0.214	0.087	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	0.486	0.301	0.295	0.145	
	23	0.332	0.189	0.229	0.091	
	24	-	-	-	-	
	25	-	-	-	-	
	26	0.644	0.424	0.380	0.216	
	27	-	-	-	-	
	28	1.127	0.830	0.670	0.451	
	29	1.017	0.733	0.597	0.387	
	30	-	-	-	-	

ตารางที่ C.9 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	Į	เดอนตุลาคม 20()4 ของสถาน.	AIT		
	DATE	368	500	675	778	
	1	0.779	0.582	0.546	0.375	
	2	-	-	-	-	
	3	0.783	0.583	0.512	0.318	
	4	0.883	0.630	0.541	0.344	
	5	0.849	0.652	0.629	0.456	
	6	-	-	-	-	
	7	-	-	-	-	
	8	0.951	0.627	0.496	0.285	
	9	1.065	0.737	0.591	0.376	
	10	0.991	0.725	0.640	0.444	
	11	-	-	-	-	
	12	-	-	-	-	
	13	1.345	0.962	0.726	0.478	
IJM			0.797	0.619	0.385	AUAME
	16		1.100	0.855	- 0.300	
	17	1 162	0.873	0.716	0.478	
	18	0.994	0.709	0.586	0.368	
	19	1 277	0.932	0.732	0.481	
	20	1.277	0.722	0.583	0.360	
	20	1.045	0.775	0.643	0.417	
	22	-	-	-	-	
	23	_	-	_	-	
	24	_	_	_	_	
	25	0.285	0.139	0.196	0.053	
	26	-		_	-	
	27	_	-			
	28	-	-	-		
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	_	
	1	1		1	1	1

ตารางที่ C.10แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	เคือ	นพฤศจิกายน 2()04 ของสถานี	AIT		
			A	DD		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13		-	-	-	
1 TINAN	nnigun	ACTAT	21-78	15-211	19172	21121ms
	<i>У</i> ЦЦ <u></u> О Г	.GLQ1/1(
	16	-	-	-	-	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	

ตารางที่ C.11แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

ตารางที่ C.12แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	เคือนมกราคม 2005 ของสถานี้ AIT						
			AC)D			
	DATE	368	500	675	778		
	1	-	-	-	-		
	2	-	-	-	-		
	3	-	-	-	-		
	4	-	-	-	-		
	5	-	-	-	-		
	6	-	-	-	-		
	7	-	-	-	-		
	8	-	-	-	-		
	9	-	-	-	-		
	10	-	-	-	-		
	11	-	-	-	-		
	12	-	-	-	-		
	13		-	-	-		
IJħ	$\frac{114}{15}$	<u>ha</u> gh		AS <u>a</u> l		Jams	
	16	-	-	-	-		
	17	-	-	-	-		
	18	-	-	-	-		
	19	-	-	-	-		
	20	-	-	-	-		
	21	-	-	-	-		
	22	-	-	-	-		
	23	-	-	-	-		
	24	-	-	-	-		
	25	-	-	-	-		
	26	-	-	-	-		
	27	-	-	-	-		
	28	-	-	-	-		
	29	-	-	-	-		
	30	1.660	1.086	0.785	0.517		
	31	1.767	1.154	0.817	0.562		

ตารางที่ C.13แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	i	พอที่ทาเพทา	มีเมาเพศก 7002 ภองยกเทศ All				
			AC)D			
	DATE	368	500	675	778		
	1	1.932	1.317	0.945	0.642		
	2	1.662	1.133	0.816	0.589		
	3	1.307	0.826	0.595	0.393		
	4	1.226	0.767	0.544	0.379		
	5	0.807	0.493	0.362	0.238		
	6	0.684	0.400	0.319	0.188		
	7	1.125	0.732	0.552	0.370		
	8	1.333	0.864	0.635	0.441		
	9	1.524	0.979	0.686	0.488		
	10	1.578	1.027	0.745	0.506		
	11	-	-	-	-		
	12	1.481	0.939	0.687	0.464		
	13	1.433	0.896	0.663	0.437		
IJħ			0.716	0.508	0.344	AUÁMS	
	16	0.645	0.367	0.309	0.196		
	17	0.648	0.353	0.314	0.181		
	18	1.573	0.975	0.735	0.456		
	19	-	-	-	-		
	20	-	-	-	-		
	21	-	-	-	-		
-	22	-	-	-	-		
	23	-	-	-	-		
	24	-	-	-	-		
	25	1.027	0.670	0.462	0.297		
	26	0.758	0.420	0.356	0.196		
	27	1.831	1.109	0.767	0.482		
	28	0.832	0.449	0.333	0.205		

ตารางที่ C.14แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวกลื่นต่างๆ เดือนกมภาพันธ์ 2005 ของสถานี AIT

	เดอ	นมนาคม 2005 เ	ของสถาน AIT			
			AOD			
	DATE	368	500	675	778	
	1	1.030	0.627	0.506	0.305	
	2	1.326	0.830	0.637	0.420	
	3	1.242	0.759	0.582	0.375	
	4	-	-	-	-	
	5	1.468	0.957	0.757	0.531	
	6	1.012	0.607	0.521	0.313	
	7	1.558	0.949	0.725	0.463	
	8	1.781	1.117	0.838	0.546	
	9	1.785	1.122	0.800	0.548	
	10	-	-	-	-	
	11	-	-	-	-	
	12	1.513	0.983	0.767	0.494	
	13	1.516	0.963	0.749	0.477	
JIM) 14 cm		0.485	S 0,427	0.284	IJĨ
	16	1.633	1.129	0.936	0.669	
	17	-	-	-	-	
	18	-	-	-	-	
	19	1.873	1.286	1.037	0.698	
	20	1.600	1.050	0.838	0.555	
	21	1.109	0.656	0.538	0.343	
	22	0.803	0.465	0.439	0.259	
	23	_	-	-	-	
	24	-	-	-	-	
	25	1.183	0.781	0.660	0.455	
	26	-	-	-	-	
	27	0.712	0.421	0.411	0.251	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.15แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เลือบบีบเวอบ 2005 ของสถาบี AIT

15

	Į	ดือนเมษายน 20	05 ของสถานี	AIT		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	-	-	-	-	
	4	-	-	-	-	
	5	-	-	-	-	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13			-	-	
1JIM	1)14	1991		AS G		AUAMS
	16	-	-	-	-	
	17	-	-	-	-	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	-	-	-	-	
	30	-	-	-	-	

ตารางที่ C.16แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	1	เดือนพฤษภาคม 2	2005 ของสถานี	AIT		
			AC)D		l
	DATE	368	500	675	778	l
	1	-	-	-	-	1
	2	-	-	-	-	1
	3	-	-	-	-	1
	4	-	-	-	-	l
	5	-	-	-	-	l
	6	-	-	-	-	l
	7	-	-	-	-	l
	8	-	-	-	-	l
	9	-	-	-	-	l
	10	-	-	-	-	l
	11	-	-	-	-	l
	12	-	-	-	-	l
	13		-	-	-	
Wh	$\left \begin{array}{c}1\\1\\1\\1\\5\end{array}\right $		G 0.263 / 5	0.432		JAMS
	16	-	-	-	-	l
	17	-	-	-	-	l
	18	-	-	-	-	l
	19	0.748	0.473	0.533	0.338	l
	20	-	-	-	-	l
	21	0.565	0.341	0.497	0.274	l
	22	0.430	0.237	0.369	0.199	l
	23	0.484	0.285	0.348	0.231	l
	24	0.549	0.312	0.414	0.242	l
	25	0.518	0.319	0.474	0.282	l
	26	0.719	0.428	0.424	0.280	l
	27	0.447	0.296	0.497	0.303	
	28	0.473	0.331	0.527	0.349	
	29	0.340	0.188	0.361	0.190	
	30	-	-	-	-	
	31	0.545	0.358	0.469	0.317	

ตารางที่ C.17แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	l	ดือนมิถุนายน 2	005 ของสถาน์	រឺ AIT		
	DATE	368	500	675	778	
	1	0.509	0.314	0.470	0.273	
	2	0.457	0.276	0.387	0.246	
	3	0.482	0.293	0.408	0.267	
	4	0.385	0.222	0.313	0.203	
	5	0.426	0.264	0.452	0.263	
	6	-	-	-	-	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	0.464	0.310	0.483	0.323	
	13		-	-	-	
717786	Ň MA CI	0.586	0.406	0.485	(271121ms
			<u> </u>	IIQ GL	IN <u>N</u> USC	JUUGIIIU
	16	-	-	-	-	
	17	-	-	-	-	
	18	0.689	0.470	0.612	0.424	
	19	0.499	0.321	0.470	0.304	
	20	-	-	-	-	
	21	0.556	0.347	0.453	0.306	
	22	-	-	-	-	
	23	-	-	-	-	
	24	0.542	0.348	0.472	0.321	
	25	-	-	-	-	
	26	0.386	0.239	0.414	0.260	
	27	0.666	0.447	0.581	0.405	
	28	0.733	0.462	0.532	0.354	
	29	0.400	0.257	0.484	0.287	
	30	0.309	0.168	0.296	0.181	

ตารางที่ C.18แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	เดีย	อนกรกฎาคม 20()5 ของสถานี้ A	JT		
			A)D		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	-	-	-	-	
	3	0.411	0.254	0.446	0.269	
	4	0.394	0.233	0.438	0.247	
	5	0.749	0.521	0.565	0.452	
	6	0.391	0.224	0.412	0.231	
	7	0.389	0.230	0.367	0.231	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	-	-	-	-	
	12	-	-	-	-	
	13		_	-	_	
TTAR	N/14CT	0.458	0.257	0.370	10.217	TZIME
		0.653	GL (0.412		0.338	JGLIIU
	16	0.654	0.373	0.441	0.267	
	17	0.588	0.342	0.498	0.288	
	18	0.607	0.364	0.502	0.299	
	19	0.478	0.315	0.478	0.328	
	20	0.458	0.265	0.373	0.228	
	21	-	-	-	-	
	22	0.353	0.210	0.380	0.240	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	0.516	0.334	0.505	0.340	
	28	0.166	0.094	0.312	0.159	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.19แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

				I AII	
	DATE	368	500	675	778
	1	-	-	-	-
	2	-	-	-	-
	3	0.342	0.197	0.441	0.246
	4	0.439	0.291	0.524	0.330
	5	0.424	0.284	0.357	0.283
	6	0.050	0.063	0.142	0.094
	7	0.470	0.304	0.355	0.273
	8	0.430	0.220	0.239	0.167
	9	0.691	0.454	0.443	0.336
	10	0.564	0.342	0.374	0.277
	11	0.460	0.277	0.369	0.253
	12	0.598	0.454	0.632	0.472
	13	0.396	0.253	0.441	0.286
N TN80	n n n C	0.580	0.393	@.430	0.362
	104510		<u> </u>	IIIQ) (GL	.0 <u>0</u> (3(
	16	-	-	-	-
	17	-	-	-	-
	18	0.703	0.426	0.456	0.330
	19	-	-	-	-
	20	-	-	-	-
	21	-	-	-	-
	22	-	-	-	-
	23	0.463	0.251	0.417	0.237
	24	0.409	0.194	0.322	0.171
	25	0.573	0.332	0.450	0.286
	26	0.544	0.300	0.433	0.259
	27	0.795	0.458	0.433	0.299
	28	0.699	0.403	0.544	0.334
	29	-	-	-	-
	30	0.509	0.296	0.394	0.257
	31	-	-	-	-

ตารางที่ C.20แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

เดือนสิงหาคม 2005 ของสถานี AIT

	Į	เดือนกันยายน 20()5 ของสถานี้ A	IT		
	DATE	368	500	675	778	
	1	-	-	-	-	
	2	0.596	0.319	0.446	0.246	
	3	0.528	0.298	0.433	0.272	
	4	-	-	-	-	
	5	0.533	0.269	0.460	0.230	
	6	0.506	0.263	0.393	0.220	
	7	-	-	-	-	
	8	-	-	-	-	
	9	-	-	-	-	
	10	-	-	-	-	
	11	0.307	0.154	0.368	0.189	
	12	-	-	-	-	
	13			-	-	
Wh?			0:458			JAM5
	16	0.378	0.190	0.366	0.205	
	17	0.284	0.119	0.305	0.138	
	18	-	-	-	-	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	0.284	0.119	0.305	0.138	
	23	0.123	0.065	0.230	0.116	
	24	0.461	0.246	0.407	0.227	
	25	0.395	0.181	0.318	0.165	
	26	0.455	0.271	0.482	0.298	
	27	0.498	0.293	0.494	0.304	
	28	-	-	-	-	
	29	-	-	-	-	
	30	0.926	0.606	0.703	0.452	

ตารางที่ C.21แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	Į	เด่อนตุลาคม 200)5 ของสถาน .	AIT		
	DATE	368	500	675	778	
	1	0.399	0.198	0.403	0.211	
	2	0.489	0.232	0.344	0.180	
	3	0.481	0.234	0.414	0.208	
	4	1.065	0.711	0.750	0.548	
	5	0.797	0.513	0.616	0.413	
	6	0.781	0.508	0.530	0.341	
	7	1.096	0.762	0.759	0.490	
	8	0.772	0.491	0.594	0.360	
	9	0.579	0.388	0.441	0.288	
	10	0.921	0.607	0.613	0.405	
	11	0.948	0.628	0.674	0.432	
	12	0.621	0.379	0.510	0.285	
	13	0.460	0.245	0.388	0.199	
IJħ		0.291	0.137	0.385	0,194	AUÁMS
	16	-	-	-	-	
	17	-	-	-	-	
	18	0.780	0.498	0.511	0.325	
	19	-	-	-	-	
	20	-	-	-	-	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	-	-	-	-	
	28	-	-	-	-	
	29	0.517	0.305	0.410	0.264	
	30	0.448	0.218	0.342	0.180	
	31	0.669	0.416	0.490	0.318	

ตารางที่ C.22แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	เคือ	นพฤศจิกายน 2()05 ของสถานี	AIT		
	DATE	368	500	675	778	
	1	0.673	0.384	0.431	0.273	
	2	0.672	0.448	0.535	0.373	
	3	0.843	0.539	0.570	0.394	
	4	0.575	0.328	0.427	0.260	
	5	-	-	-	-	
	6	-	-	-	-	
	7	0.237	0.061	0.259	0.088	
	8	0.634	0.363	0.457	0.292	
	9	0.796	0.467	0.428	0.263	
	10	0.353	0.145	0.245	0.113	
	11	0.707	0.360	0.365	0.210	
	12	0.878	0.518	0.523	0.307	
/==	13	0.661	0.356	0.384	0.214	
nThan	nnitur	0.736	270.389 5	0.455	0.240	NIZIMA
			0.622	0.523	0.332	\bigcirc GLI I \bigcirc
	16	0.461	0.236	0.299	0.166	
	17	0.455	0.224	0.378	0.193	
	18	-	-	-	-	
	19	0.443	0.222	0.366	0.192	
	20	0.499	0.249	0.338	0.171	
	21	0.618	0.341	0.383	0.212	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	-	-	-	-	
	26	-	-	-	-	
	27	0.667	0.410	0.423	0.269	
	28	0.605	0.377	0.448	0.269	
	29	0.453	0.230	0.321	0.170	
	30	0.404	0.208	0.318	0.161	

ตารางที่ C.23แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

	ľ	คอนธนวาคม 20	005 ของสถาน	AIT		
	DATE	368	500	675	778	
	1	0.412	0.204	0.325	0.162	
	2	-	-	-	-	
	3	-	-	-	-	
	4	0.569	0.306	0.373	0.218	
	5	-	-	-	-	
	6	0.575	0.330	0.376	0.234	
	7	0.402	0.173	0.286	0.131	
	8	0.416	0.178	0.272	0.125	
	9	0.436	0.194	0.284	0.135	
	10	0.359	0.139	0.262	0.114	
	11	0.377	0.165	0.275	0.130	
	12	0.312	0.113	0.297	0.120	
	13	0.477	0.243	0.323	0.177	2
IJħ				0,286 115- (1		WAMS
	16	-	-	-	-	
	17	-	-	-	-	
	18	0.700	0.395	0.415	0.239	
	19	0.719	0.398	0.428	0.245	
	20	0.585	0.299	0.364	0.198	
	21	-	-	-	-	
	22	-	-	-	-	
	23	-	-	-	-	
	24	-	-	-	-	
	25	0.638	0.345	0.410	0.222	
	26	-	-	-	-	
	27	-	-	-	-	
	28	0.687	0.373	0.384	0.228	
	29	-	-	-	-	
	30	-	-	-	-	
	31	-	-	-	-	

ตารางที่ C.24แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

ภาคผนวก จ. ภาคมนวก จ. ที่ความยาวคลื่นต่างๆ ของสถานีกรุงเทพฯ

		เดอน มกราคม	ม 2004 ของสถ	ถานกรุงเทพฯ			
				AOD			
	DATE	380	440	500	670	870	
	1	0.282	0.220	0.158	0.108	0.099	
	2	0.791	0.639	0.509	0.296	0.187	
	3	0.261	0.202	0.154	0.090	0.067	
	4	0.664	0.540	0.424	0.240	0.147	
	5	1.373	1.078	0.878	0.499	0.304	
	6	0.426	0.354	0.306	0.206	0.148	
	7	0.682	0.522	0.409	0.227	0.147	
	8	0.362	0.263	0.179	0.090	0.062	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	-	-	-	-	C?
IJM				$\frac{1}{1}$	ADDU		nf
00 22	16	-)) 	-	-	-	
	17	-	-	-	-	-	
	18	0.652	0.489	0.411	0.254	0.179	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	1.828	1.483	1.253	0.785	0.515	
	24	1.951	1.590	1.325	0.813	0.547	
	25	-	-	-	-	-	
	26	1.215	0.995	0.797	0.486	0.323	
	27	1.183	0.956	0.776	0.476	0.332	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.1 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

เดือน มกราคม 2004 ของสถานีกรุงเทพฯ

		9		9			_
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	0.621	0.462	0.400	0.257	0.181	
	5	1.013	0.795	0.666	0.429	0.326	
	6	-	-	-	-	-	
	7	1.026	0.823	0.664	0.409	0.273	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	2.420	2.049	1.708	1.048	0.617	
	11	1.992	1.683	1.405	0.860	0.496	
	12	0.815	0.645	0.571	0.445	0.406	Ċ
IJħ		MAY	Mat	AAS	AIJON	JAUG	MS
	15	-	-	-	-	-	
	16	-	-	-	-	-	
	17	0.109	0.048	0.034	0.007	0.022	
	18	0.908	0.795	0.679	0.465	0.360	
	19	0.456	0.329	0.234	0.093	0.051	
	20	-	-	-	-	-	
	21	0.223	0.165	0.114	0.064	0.050	
	22	-	-	-	-	-	
	23	0.741	0.640	0.568	0.398	0.301	
	24	1.951	1.590	1.325	0.813	0.547	
	25	-	-	-	-	-	
	26	1.215	0.995	0.797	0.486	0.323	
	27	1.183	0.956	0.776	0.476	0.332	
	28	-	-	-	-	-	
	29	-	-	-	-	-	

ตารางที่ D.2 แสดงก่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวกลื่นต่างๆ เดือน กุมภาพันธ์ 2004 ของสถานี กรุงเทพฯ

		เผเดห ทห เมห	J 2004 JUNN	าเหมร์งเพพา					
	AOD								
	DATE	380	440	500	670	870			
	1	1.244	1.051	0.864	0.544	0.365			
	2	-	-	-	-	-			
	3	0.724	0.575	0.460	0.288	0.212			
	4	-	-	-	-	-			
	5	1.186	0.986	0.768	0.380	0.190			
	6	0.792	0.634	0.521	0.299	0.195			
	7	1.276	1.067	0.929	0.643	0.491			
	8	-	-	-	-	-			
	9	1.371	1.131	0.979	0.638	0.473			
	10	0.607	0.430	0.340	0.169	0.104			
	11	1.056	0.891	0.768	0.500	0.349			
	12	0.646	0.462	0.361	0.176	0.101			
	13	-	-	-	-	-			
IJħ			Mat	<u> 11115</u>	<u> </u>	Iang	M		
	16	-	-	-	-	-			
	17	0.426	0.300	0.184	0.092	0.047			
	18	0.953	0.743	0.589	0.319	0.199			
	19	0.932	0.755	0.627	0.381	0.247			
	20	-	-	-	-	-			
	21	-	-	-	-	-			
	22	-	-	-	-	-			
	23	-	-	-	-	-			
	24	-	-	-	-	-			
	25	-	-	-	-	-			
	26	-	-	-	-	-			
	27	-	-	-	-	-			
	28	-	-	-	-	-			
	29	-	-	-	-	-			
	30	-	-	-	-	-			
	31	-	-	-	-	-			

ตารางที่ D.3 แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือน มีบาคม 2004 ของสถาบีกรงเทพฯ

		เดอทเทษ เถท	2004 ของสถ	านกรุงเทพๆ			l	
		AOD						
	DATE	380	440	500	670	870		
	1	-	-	-	-	-		
	2	-	-	-	-	-		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	-	-	-	-	-		
	9	-	-	-	-	-		
	10	-	-	-	-	-		
	11	-	-	-	-	-		
	12	0.995	0.779	0.741	0.530	0.412		
	13			-	-			
UM			1.114	0.943	0.543	0.371	ÍM6	
	16	-	-	-	-	-		
	17	-	-	-	-	-		
	18	1.162	0.874	0.692	0.400	0.275		
	19	2.107	1.695	1.341	0.785	0.505		
	20	1.943	1.545	1.276	0.763	0.488		
	21	-	-	-	-	-		
	22	0.479	0.419	0.336	0.187	0.127		
	23	2.038	1.537	1.287	0.722	0.353		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	-	-	-	-	-		
	28	-	-	-	-	-		
	29	-	-	-	-	-		
	30	1.010	0.807	0.682	0.442	0.338		

ตารางที่ D.4 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

เดือนเมษายน 2004 ของสถานึกรุงเทพฯ
		เดอทิพปิศบา	คม 2004 ของ	สถานกรุงเทพะ	4		1
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	_	-	-	_	
IJħ		<u>INAC</u>	MAIAU	<u> 1995</u>		<u>IANG</u>	M
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	0.544	0.375	0.333	0.234	0.232	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.5 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

เดือนพฤษภาคม 2004 ของสถานีกรุงเทพฯ

		เดือนมีถุนายน	2004 ของสถ	านีกรุงเทพฯ			
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	0.735	0.540	0.452	0.271	0.191	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	1.569	1.247	0.947	0.454	0.188	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	T	-	-	-	
IJħ		MACI.	AIGUU	<u>IMS</u>	<u>an</u>		ME
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	0.542	0.311	0.255	0.109	0.064	

ตารางที่ D.6 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

		เพยนแบบปู่แ	FIN 2004 001	แถกษาสุ่งเทพา			
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	0.535	0.389	0.371	0.264	0.217	
Wh		HAU	IAIAU	<u> 1995</u>		<u>IANG</u>	Ma
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	1.381	0.995	0.831	0.430	0.211	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.7 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

เดือนกรกฎาคม 2004 ของสถานีกรุงเทพฯ

		เดือนสิงหาคม	J 2004 ของส _า	ถานิกรุงเทพฯ			
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	0.483	0.426	0.372	0.278	0.250	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	<u> </u>	-	-	_	
IJħ		MAS	Man	<u> IAIS</u>	READ	JANG	MS
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.8 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ শ

9 a

		เดอนกนยายน	1 2004 Volat	ภานกรุงเทพฯ			1
				AOD		1	
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13			-	-		
IJħ		MAU	Man	<u> 1AS</u>	<u>andi an</u>	<u>Jang</u>	MS
	16	_	_	_	-	_	
	17	_	-	-	-		
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.9 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ <u>.</u> e

2004 และสถานี้

	[เทยนทุกเหม 2004 ของกถานกรุงเทพฯ						
				AOD				
	DATE	380	440	500	670	870		
	1	-	-	-	-	-		
	2	-	-	-	-	-		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	-	-	-	-	-		
	9	-	-	-	-	-		
	10	-	-	-	-	-		
	11	-	-	-	-	-		
	12	-	-	-	-	-		
	13	0.861	0.744	0.624	0.423	0.319		
IJħ		$\mathbb{H}_{0.770}^{\mathbb{H}}$		<u>1647</u>			Ma	
	16	0.839	0.763	0.671	0.467	0.314		
	17	0.588	0.558	0.481	0.385	0.332		
	18	0.310	0.278	0.241	0.160	0.114		
	19	-	-	-	-	-		
	20	1.002	0.881	0.779	0.542	0.387		
	21	1.648	1.498	1.314	0.913	0.604		
	22	-	-	-	-	-		
	23	0.496	0.460	0.401	0.304	0.254		
	24	0.298	0.282	0.246	0.161	0.110		
	25	0.400	0.356	0.337	0.276	0.268		
	26	1.070	0.988	0.871	0.605	0.403		
-	27	0.575	0.517	0.458	0.314	0.230		
	28	-	-	-	-	-		
	29	0.295	0.270	0.241	0.182	0.164		
	30	-	-	-	-	-		
	31	0.421	0.338	0.291	0.190	0.141		

ตารางที่ D.10 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ <u>ح</u>

2004 ของสอาบี

	เดยนพฤทงกายน 2004 ของสถานกรุงเทพๆ							
	AOD							
	DATE	380	440	500	670	870		
	1	-	-	-	-	-		
	2	-	-	-	-	-		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	0.159	0.135	0.100	0.048	0.066		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	0.411	0.351	0.285	0.180	0.126		
	9	0.264	0.205	0.142	0.063	0.051		
	10	0.319	0.256	0.176	0.072	0.044		
	11	-	-	-	-	-		
	12	0.291	0.203	0.132	0.044	0.026		
	13			-	-			
IJħ		0.597 Cl		<u> </u>			ÍMS	
	16	0.498	0.435	0.373	0.237	0.160		
	17	-	-	-	-	-		
	18	-	-	-	-	-		
	19	-	-	-	-	-		
	20	-	-	-	-	-		
	21	-	-	-	-	-		
	22	-	-	-	-	-		
	23	-	-	-	-	-		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	-	-	-	-	-		
	28	-	-	-	-	-		
	29	0.295	0.270	0.241	0.182	0.164		
	30	-	-	-	-	-		

ตารางที่ D.11 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ

เดือนพฤศจิกายน 2004 ของสถานึกรุงเทพฯ

		AOD						
	DATE	380	440	500	670	870		
	1	0.289	0.214	0.158	0.073	0.052		
	2	-	-	-	-	-		
	3	1.251	1.115	0.974	0.690	0.510		
	4	0.978	0.835	0.679	0.405	0.229		
	5	1.377	1.221	1.076	0.742	0.508		
	6	-	-	-	-	-		
	7	1.042	0.827	0.623	0.332	0.150		
	8	-	-	-	-	-		
	9	0.659	0.547	0.454	0.263	0.160		
	10	0.218	0.168	0.160	0.107	0.084		
	11	0.251	0.194	0.153	0.098	0.081		
	12	-	-	-	-	-		
	13	0.559	0.443	0.364	0.228	0.162	3	
ก ที่คุ		0.948	0.730	0.614	0.393	0.255		
JU IN	15	0.846	0.788	0.681	0.471	0.348		
	16	0.869	0.684	0.516	0.272	0.147		
	17	0.342	0.273	0.215	0.118	0.070		
	18	0.436	0.362	0.270	0.157	0.105		
	19	0.842	0.678	0.528	0.279	0.138		
	20	-	-	-	-	-		
	21	2.253	1.850	1.507	0.902	0.559		
	22	-	-	-	-	-		
	23	2.071	1.847	1.554	0.986	0.591		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	1.708	1.435	1.195	0.799	0.578		
	27	0.739	0.616	0.539	0.393	0.332		
	28	0.469	0.398	0.340	0.268	0.246		
	29	-	-	-	-	-		
	30	-	-	-	-	-		
	31	-	-	-	-	-		

ตารางที่ D.12 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนหันวาคม 2004 ของสถานีกรงเทพฯ

		เดือนมกรา	คม 2005 ของ	สถานีกรุงเทพฯ	1		
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	0.804	0.667	0.546	0.338	0.217	
	5	-	-	-	-	-	
	6	1.235	0.992	0.802	0.495	0.330	
	7	-	-	-	-	-	
	8	0.658	0.574	0.487	0.356	0.299	
	9	0.150	0.121	0.078	0.040	0.036	
	10	1.004	0.801	0.642	0.398	0.265	
	11	1.364	1.230	1.166	1.015	0.982	
	12	0.637	0.500	0.409	0.234	0.125	
	13	-	-	-	-	-	
IJħ		U 10.937 (U		0.764	0.755] 0.791] G	m
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	0.866	0.768	0.650	0.496	0.538	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.13 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

	AOD									
	DATE	380	440	500	670	870				
	1	-	-	-	-	-				
	2	-	-	-	-	-				
	3	-	-	-	-	-				
	4	-	-	-	-	-				
	5	-	-	-	-	-				
	6	-	-	-	-	-				
	7	0.195	0.171	0.124	0.088	0.101				
	8	-	-	-	-	-				
	9	-	-	-	-	-				
	10	-	-	-	-	-				
	11	-	-	-	-	-				
	12	-	-	-	-	-				
	13	-	-	-	-	-				
IJħ							M			
	16	-	-	-	-	-				
	17	-	-	-	-	-				
	18	-	-	-	-	-				
	19	0.599	0.450	0.235	0.074	0.048				
	20	-	-	-	-	-				
	21	-	-	-	-	-				
-	22	0.779	0.628	0.520	0.324	0.248				
	23	-	-	-	-	-				
	24	-	-	-	-	-				
	25	-	-	-	-	-				
	26	1.028	0.809	0.648	0.367	0.226				
	27	-	-	-	-	-				
	28	-	-	-	-	-				

ตารางที่ D.14 แสดงก่ากวามลึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนกมภาพันธ์ 2005 ของสถานีกรุงเทพฯ

		រមាយដោងដោម 	ม 2005 ของถ	นานทุ่งเพพา			1
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	0.790	0.671	0.576	0.385	0.240	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-		-	-	-	
1 Tha		unad	iñian	NAS	27777	12/12	[nnis
						<u>341</u> 04	
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-	

ตารางที่ D.15 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนมีนาคม 2005 ของสถานีกรงเทพฯ

		IND RUD DID	A 2005 0016				
				AOD			
	DATE	380	440	500	670	870	
	1	1.075	0.924	0.757	0.497	0.310	
	2	1.071	0.929	0.921	0.680	0.752	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	1.390	1.181	1.024	0.717	0.549	
	9	-	-	-	-	-	
	10	0.294	0.244	0.215	0.160	0.165	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13		_ 	-	-	_	
1.1778		INACI	AA	1AS-	<u>ainn</u>	Iana	IM
	1015						
	16	-	-	-	-	-	
	17	0.908	0.779	0.562	0.447	0.374	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	0.442	0.370	0.308	0.178	0.115	
	23	0.342	0.254	0.180	0.077	0.029	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	

ตารางที่ D.16 แสดงค่าความถึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนเมษายน 2005 ของสถานีกรุงเทพฯ

	เดอนพฤษภาคม 2005 ของสถานกรุงเทพฯ							
	AOD							
	Date	380	440	500	670	870		
	1	-	-	-	-	-		
	2	0.450	0.377	0.310	0.210	0.167		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	-	-	-	-	-		
	9	-	-	-	-	-		
	10	-	-	-	-	-		
	11	-	-	-	-	-		
	12	-	-	-	-	-		
	13	-	-	-	-	-	ß	
71778	141A	unad	i Agn	AAS	ginn	IANIA	ma	
						SGLUG		
	16	-	-	-	-	-		
	17	-	-	-	-	-		
	18	-	-	-	-	-		
	19	-	-	-	-	-		
	20	-	-	-	-	-		
	21	-	-	-	-	-		
	22	-	-	-	-	-		
	23	-	-	-	-	-		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	-	-	-	-	-		
	28	-	-	-	-	-		
	29	-	-	-	-	-		
	30	-	-	-	-	-		
	31	-	-	-	-	-		

ตารางที่ D.17 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

-	Γ	រពេកអាព័ការ	UH 2003 IUN	แยเหมร์สหมพ.	I		1		
	AOD								
	DATE	380	440	500	670	870			
	1	-	-	-	-	-			
	2	-	-	-	-	-			
	3	-	-	-	-	-			
	4	0.642	0.542	0.391	0.171	0.042			
	5	-	-	-	-	-			
	6	-	-	-	-	-			
	7	-	-	-	-	-			
	8	-	-	-	-	-			
	9	-	-	-	-	-			
	10	-	-	-	-	-			
	11	-	-	-	-	-			
	12	-	-	-	-	-			
	13	0.571	0.463	0.424	0.354	0.370			
NTA	14	naa	AZN	MAS	2100	<u>Tang</u>	MAS		
	15		<u> 1910</u>	<u>- 111 110</u>					
	16	0.567	0.439	0.383	0.302	0.306			
	17	-	-	-	-	-			
	18	-	-	-	-	-			
	19	-	-	-	-	-			
	20	-	-	-	-	-			
	21	-	-	-	-	-			
	22	-	-	-	-	-			
	23	-	-	-	-	-			
	24	-	-	-	-	-			
	25	-	-	-	-	-			
	26	-	-	-	-	-			
	27	-	-	-	-	-			
	28	-	-	-	-	-			
	29	-	-	-	-	-			
	30	-	-	-	-	-			

ตารางที่ D.18 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนมิถนายน 2005 ของสถานีกรงเทพฯ

	เดือนกรกฎาคม 2005 ของสถานีกรุงเทพฯ							
	AOD							
	DATE	380	440	500	670	870		
	1	-	-	-	-	-		
	2	-	-	-	-	-		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	-	-	-	-	-		
	9	-	-	-	-	-		
	10	-	-	-	-	-		
	11	-	-	-	-	-		
	12	-	-	-	-	-		
	13	-		-	-	-		
IJħ		INAC		<u> MAS</u>		<u>Ian</u>	MS	
	16	0.772	0.594	0.439	0.230	0.157		
	17	-	-	-	-	-		
	18	-	-	-	-	-		
	19	0.326	0.279	0.257	0.225	0.243		
	20	-	-	-	-	-		
	21	-	-	-	-	-		
	22	-	-	-	-	-		
	23	-	-	-	-	-		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	-	-	-	-	-		
	28	-	-	-	-	-		
	29	-	-	-	-	-		
	30	-	-	-	-	-		
	31	-	-	-	-	-		

ตารางที่ D.19 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ শ a

	AOD						
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	-	-	-	-	-	
IJħ		nau	AAU	IAS (<u>I </u>		
	16						
	17	0.391	0.340	0.267	0.179	0.178	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	0.951	0.851	0.699	0.421	0.520	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-	
	31	-	-	-	-	-]	

ตารางที่ D.20 แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนสิงหากม 2005 ของสถานีกรงเทพฯ

	เดอนกนยายน 2005 ของสถานกรุงเทพฯ						
				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	-	-	-	-	-	
	11	-	-	-	-	-	
	12	-	-	-	-	-	
	13	<u>-</u>	-	-	-	-	C
IJħ		129	ARIU	MS	<u>AIDDI</u>	JANA	MS
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	-
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	-	-	-	-	-]

ตารางที่ D.21 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

เดือนกันยายน 2005 ของสถานีกรุงเทพฯ

		ពោបធញ្ចពាពរ	2003 00101	าหม่างหม่มา			
				AOD			
	DATE	380	440	500	670	870	
	1	1.323	1.098	0.842	0.480	0.308	
	2	-	-	-	-	-	
	3	0.905	0.712	0.533	0.243	0.106	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	-	-	-	-	-	
	7	-	-	-	-	-	
	8	-	-	-	-	-	
	9	-	-	-	-	-	
	10	0.444	0.359	0.298	0.188	0.122	
	11	1.474	1.270	0.949	0.501	0.226	
	12	1.226	1.060	0.950	0.618	0.364	
	13			-	-	-	
IJħ			0.240				
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	-	-	-	-	-	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	0.602	0.637	0.607	0.431	0.230	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	-	-	-	-	-	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	0.181	0.166	0.143	0.078	0.035	
	31						

ตารางที่ D.22 แสดงก่ากวามถึกเชิงแสงของฝุ่นละอองที่กวามยาวกลื่นต่างๆ เดือนตลากม 2005 ของสถานีกรงเทพฯ

				AOD			
	DATE	380	440	500	670	870	
	1	-	-	-	-	-	
	2	-	-	-	-	-	
	3	-	-	-	-	-	
	4	-	-	-	-	-	
	5	-	-	-	-	-	
	6	0.458	0.378	0.308	0.203	0.159	
	7	-	-	-	-	-	
	8	1.638	1.352	1.041	0.469	0.313	
	9	0.823	0.749	0.604	0.362	0.220	
	10	0.842	0.856	0.865	0.885	0.920	
	11	0.266	0.244	0.185	0.109	0.069	
	12	-	-	-	-	-	
	13			-	-		- 6
IJħ		0.725	0.686	0.670	0.611	0.617	
	16	-	-	-	-	-	
	17	-	-	-	-	-	
	18	0.653	0.578	0.493	0.302	0.163	
	19	-	-	-	-	-	
	20	-	-	-	-	-	
	21	-	-	-	-	-	
	22	-	-	-	-	-	
	23	-	-	-	-	-	
	24	0.504	0.461	0.405	0.294	0.233	
	25	-	-	-	-	-	
	26	-	-	-	-	-	
	27	-	-	-	-	-	
	28	-	-	-	-	-	
	29	-	-	-	-	-	
	30	0.181	0.166	0.143	0.078	0.035	

ตารางที่ D.23 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ

เดือนพฤศจิกายน 2005 ของสถานีกรุงเทพฯ

			IN 2003 0016	ายาษาสุ่งงากา			_	
	AOD							
	DATE	380	440	500	670	870		
	1	-	-	-	-	-		
	2	-	-	-	-	-		
	3	-	-	-	-	-		
	4	-	-	-	-	-		
	5	-	-	-	-	-		
	6	-	-	-	-	-		
	7	-	-	-	-	-		
	8	-	-	-	-	-		
	9	0.186	0.162	0.149	0.126	0.144		
	10	-	-	-	-	-		
	11	-	-	-	-	-		
	12	-	-	-	-	-		
	13	-	-	-	-	-		
1178		1.123	0.934	0.774	0.503		Ima	
	16	<u>- 1910</u>	<u></u>	<u> </u>		1900- -		
	17	-	-	-	-	-		
	18	-	-	-	-	-		
	19	-	-	-	-	-		
	20	-	-	-	-	-		
	21	-	-	-	-	-		
	22	-	-	-	-	-		
	23	-	-	-	-	-		
	24	-	-	-	-	-		
	25	-	-	-	-	-		
	26	-	-	-	-	-		
	27	-	-	-	-	-		
	28	-	-	-	-	-		
	29	-	-	-	-	-		
	30	-	-	-	-	-		
	31	-	-	-	-	-		

ตารางที่ D.24 แสดงค่าความลึกเชิงแสงของฝุ่นละอองที่ความยาวคลื่นต่างๆ เดือนหันวาคม 2005 ของสถานีกรงเทพฯ

ภาคผนวก ฉ.

อัตราส่วนการลดลงของความเข้มรังสีดวงอาทิตย์ในรอบปี UNIONO ของสถานีนครปฐมและสถานี AIT

1. อัตราส่วนการลดลงของความเข้มรังสีตรงของดวงอาทิตย์

หลังจากทำความทคสอบความละเอียดถูกต้องของแบบจำลองแล้ว ผู้วิจัยได้นำค่าความเข้ม รังสีตรงของควงอาทิตย์ที่ได้จากการวัคจริงเป็นกรณีที่บรรยากาศมีฝุ่นละออง มาเปรียบเทียบกับค่า ความเข้มรังสีตรงของควงอาทิตย์ที่ได้จากการคำนวณในกรณีที่บรรยากาศไม่มีฝุ่นละอองในรอบวัน ผลที่ได้ของสถานีนครปฐมและสถานี AIT แสดงคังรูปที่ E.1 - รูปที่ E.2

รูปที่ E.2 แสดงการเปรียบเทียบค่าความเข้มรังสีตรงของควงอาทิตย์ที่ได้จากการการวัคซึ่งเป็น กรณีที่บรรยากาศมีฝุ่นละอองและจากการคำนวณในกรณีที่บรรยากาศไม่มีฝุ่นละออง ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี ในวันที่ 3 พฤศจิกายน ค.ศ. 2004

จากกราฟรูปที่ E.1 - รูปที่ E.2 พบว่าค่าความเข้มรังสีตรงของควงอาทิตย์ที่ได้จากการวัด จริงมีค่าความเข้มน้อยกว่าความเข้มรังสีตรงของควงอาทิตย์ที่ได้จากการคำนวณ ในกรณีที่ บรรยากาศไม่มีฝุ่นละออง ซึ่งแสดงให้เห็นว่าฝุ่นละอองมีอิทธิพลต่อความเข้มรังสีควงอาทิตย์จริง ทำให้ความเข้มรังสีตรงของควงอาทิตย์ลดลงอย่างเห็นได้ชัค เมื่อคำนวณโดยใช้สมการที่ 3.26 กับ ทั้ง 2 สถานีโดยพิจารณาที่เวลา 12.30น. ของวันที่ 14 เมษายน ค.ศ.2004 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม พบว่าก่าความเข้มรังสีตรงของควงอาทิตย์ลดลงถึง 36.01% สำหรับสถาบัน เทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี ที่เวลา 12.30น. ของวันที่ 3 พฤศจิกายน ค.ศ. 2004 พบว่าก่าความเข้มรังสีตรงของควงอาทิตย์ ลดลงถึง 23.80% ซึ่งถือว่าความเข้มรังสีตรงของควง อาทิตย์ลดลงมากพอสมควร

เมื่อพิจารณาอัตราส่วนการลดลงของรังสีตรงของควงอาทิตย์เนื่องจากฝุ่นละอองในรอบ 2 ปีของทั้ง 2 สถานีในช่วงปี ค.ศ. 2004 – 2005 พบว่าที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม ความเข้มรังสีตรงของควงอาทิตย์ลดลงประมาณ 15–55% ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัด ปทุมธานี ความเข้มรังสีตรงของควงอาทิตย์ลดลงประมาณ 20–50% โดยอัตราส่วนการลดลงของ รังสีตรงของควงอาทิตย์เนื่องจากฝุ่นละอองในรอบ 2 ปีของสถานีนครปฐมและสถานี AIT แสดงใน รูปที่ E.3 – รูปที่ E.4

รูปที่ E.3 แสดงอัตราส่วนการลดลงของรังสีตรงของควงอาทิตย์เนื่องจากฝุ่นละอองในช่วง ปี ค.ศ. 2004 – 2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

รูปที่ E.4 แสดงอัตราส่วนการลดลงของรังสีตรงของควงอาทิตย์เนื่องจากฝุ่นละอองในช่วง ปี ค.ศ. 2004 – 2005 ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

จากรูปที่ E.3– รูปที่ E.4 จะเห็นว่าโดยผลที่ได้จะคล้ายๆ กันทั้ง 2 สถานี กล่าวคือในช่วงฤดู แล้ง (เดือนพฤสจิกายน -เดือนพฤษภาคม) อัตราส่วนการลดลงของความเข้มรังสีดวงอาทิตย์ เนื่องจากฝุ่นละอองก่อนข้างสูงโดยมีก่าลดลงประมาณ 25 - 50% ส่วนในช่วงฤดูฝนคือเดือน มิถุนายน-เดือนสิงหาคม อัตราส่วนการลดลงของความเข้มรังสีดวงอาทิตย์เนื่องจากฝุ่นละออง โดย มีก่าลดลงประมาณ 10-25% ซึ่งมีก่าการลดลงน้อยกว่าในช่วงฤดูแล้ง

2. อัตราส่วนการลดลงของความเข้มรังสีรวมของดวงอาทิตย์

สำหรับความเข้มรังสีรวมของดวงอาทิตย์ก็เช่นเดียวกัน ผู้วิจัยได้ทำการเทียบค่าความเข้ม รังสีรวมของดวงอาทิตย์ที่คำนวณได้ในกรณีที่บรรยากาศไม่มีฝุ่นละออง กับความเข้มรังสีรวมของ ดวงอาทิตย์ที่วัดได้จริงของทั้ง 3 สถานีผลที่ได้ของสถานีนครปฐมและสถานี AIT แสดงในกราฟรูป ที่ E.5 – รูปที่ E.6

รูปที่E.5 แสดงการเปรียบเทียบก่ากวามเข้มรังสีรวมของดวงอาทิตย์ที่ได้จากการการวัดซึ่งเป็น กรณีที่บรรยากาศมีฝุ่นละอองและการกำนวณในกรณีที่บรรยากาศไม่มีฝุ่นละออง ของมหาวิทยาลัยศิลปากร จังหวัดนกรปฐม ในวันที่ 14 เมษายน ค.ศ. 2004

รูปที่ E.6แสดงการเปรียบเทียบค่าความเข้มรังสีรวมของดวงอาทิตย์ที่ได้จากการการวัดซึ่งเป็น กรณี ที่บรรยากาศมีฝุ่นละอองและจากการคำนวณในกรณีที่บรรยากาศไม่มีฝุ่นละออง ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี ในวันที่ 3 พฤศจิกายน ค.ศ. 2004

จากกราฟรูปที่ E.5 - รูปที่ E.6 มีลักษณะคล้ายกับกราฟของความเข้มรังสีตรงของควง อาทิตย์ กล่าวคือ ค่าความเข้มรังสีรวมของควงอาทิตย์ที่วัคได้จริงมีค่าความเข้มน้อยกว่าความเข้ม รังสีรวมของควงอาทิตย์ที่ได้จากการคำนวณกรณีที่บรรยากาศไม่มีฝุ่นละออง ซึ่งแสดงว่าฝุ่นละออง มีอิทธิพลต่อความเข้มรังสีรวมของควงอาทิตย์เหมือนกับกรณีของความเข้มรังสีตรงของควงอาทิตย์ แต่ก่ากวามเข้มรังสีรวมของควงอาทิตย์ลดลงเพียงเล็กน้อย ไม่มากเหมือนกันกรณีของความเข้มรังสี ตรงของควงอาทิตย์ เมื่อคำนวณหาอัตราส่วนการลดลงของรังสีควงอาทิตย์เนื่องจากฝุ่นละออง โดย พิจารณาที่เวลา 12.30น. ในวันที่ 14 เมษายน ค.ศ.2004 ของมหาวิทยาลัยศิลปากร จังหวัด นครปฐม พบว่าก่าความเข้มรังสีรวมของควงอาทิตย์ลดลงเพียง 10.97% ที่เวลา 12.30น. ในวันที่ 3 พฤศจิกายน ค.ศ. 2004 ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี ค่าความเข้มรังสี รวมของควงอาทิตย์ ลดลงถึง 13.22% ซึ่งก่าที่ลดลงนี้น้อยกว่าในกรณีความเข้มรังสีตรงอย่างเห็น ได้ชัด

เมื่อพิจารณาอัตราส่วนการลดลงของรังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละอองในรอบ 2 ปีของทั้ง 2 สถานีในช่วงปี ค.ศ. 2004 – 2005 พบว่าที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม ความ เข้มรังสีรวมของควงอาทิตย์ลดลงประมาณ 5 – 15% ที่สถาบันเทคโนโลยีแห่งเอเชีย จังหวัด ปทุมธานี ความเข้มรังสีรวมของควงอาทิตย์ลดลงประมาณ 10 - 20% โดยอัตราส่วนการลดลง ของรังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละอองในรอบ 2 ปีของสถานีนครปฐม และสถานี AIT แสดงในรูปที่ E.7 - รูปที่ E.8

รูปที่ E.7 แสดงอัตราส่วนการลดลงของรังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละอองในช่วง ปี ค.ศ. 2004 – 2005 ที่มหาวิทยาลัยศิลปากร จังหวัดนครปฐม

182

รูปที่ E.8 แสดงอัตราส่วนการลดลงของรังสีรวมของดวงอาทิตย์เนื่องจากฝุ่นละอองในช่วง ปี ค.ศ. 2004 – 2005 ของสถาบันเทคโนโลยีแห่งเอเชีย จังหวัดปทุมธานี

สำหรับกราฟรูปที่ E.7 – รูปที่ E.8 เป็นกราฟที่แสดงก่าอัตราส่วนการลดลงของความเข้ม รังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละออง โดยก่าที่ได้มีลักษณะที่สอคกล้องกันทั้ง 2 สถานีซึ่ง กล้ายกับกราฟรูปที่ E.5 – รูปที่ E.6 แต่ก่าการลดลงของความเข้มรังสีรวมของควงอาทิตย์เนื่องจาก ฝุ่นละอองมีก่าน้อยกว่าในกรณีของกวามเข้มรังสีตรงของควงอาทิตย์ เป็นเพราะว่าก่าความเข้มรังสี รวมของควงอาทิตย์เป็นผลรวมของกวามเข้มรังสีตรงและกวามเข้มรังสีกระจายของควงอาทิตย์ จึง ทำให้อัตราส่วนการลดลงของกวามเข้มรังสีรวมของควงอาทิตย์น้อยกว่ากวามเข้มรังสีตรงของควง อาทิตย์โดยในช่วงฤดูแล้ง (เดือนพฤศจิกายน – เดือนพฤษภากม) ก่าอัตราส่วนการลดลงของกวาม เข้มรังสีรวมของควงอาทิตย์เนื่องจากฝุ่นละอองมีก่ามากกว่า 10% และในช่วงฤดูฝน (เดือน กรกฎากม-เดือนตุลากม) จะมีก่าลคลงน้อยกว่า 10%

ประวัติผู้วิจัย

ชื่อ – สกุล	นางสาวสุดารัตน์ สุนทโรภาส
ที่อยู่	9/2 หมู่ 9 ตำบลดอนกระเบื้อง อำเภอบ้านโป่ง
	จังหวัดราชบุรี 70110
ประวัติการศึกษา	
พ.ศ. 2541	สำเร็จการศึกษามัธยมศึกษาปี่ที่ 6 โรงเรียนนารีวุฒิ
	อำเภอบ้านโป่ง จังหวัดราชบุรี
พ.ศ. 2545	สำเร็จการศึกษาวิทยาศาสตรบัณฑิต สาขาวิชาฟิสิกส์
	คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จังหวัดนครปฐม
พ.ศ. 2546	ศึกษาต่อระดับปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์
	คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร จังหวัดนครปฐม
ما حمد مشجع محمد م	

ประวัติการทำงาน